GNU Assembler Manual

Contents

OWVEIVIBIW ...ttt ettt ettt b bbbt e e bt e s bt oo h e e eb e e R e oo Rt e e R e e AR e e e R e e AR e e eE e e AR e e AR e e AR e e AR e e AR e e AR e e nR e e aReenEeenbeenbeenbeenbeenreenreenreens 3
TNE GINU ASSEIMIDIEY ...ttt ittt ettt b et b bt b e e s b e e s b e e s b e e s b e e o b e e e b e e eb e e eR e e e b e e AR e e e he e nhe e eb e e nRe e ebeenbe e nbeenbeenneennnenne s 5
(O o] 1= ol (ol o 117 LT RO R TSRS 5
1000]1000°21 010 I IR o =TT OO P PP PRPRR PSR PRRPRN 5
T oL L =S TSR 6
OULPUL (OBJECL) Il ettt b e r e bt s bt e s b e s bt e sE e e s bt e s Ee e s b e e sbe e abeesbeesbeesbeenbeenbeenreenreenreens 6
Error and WarNinNg IMESSAgES.ceeiuuieiuteeiteeaiteeertet e ettt e sabe e s bt e e abee e aaeeesateesabeeaabe e e b ee e aaee e aabeeaabeeaabeeeabeeesmbeeambeeanbeeabeeeaseeas 7
COMMANG-LINE OPLIONSei ittt ettt ettt sb et shte e sabe e s be e e be e e ehee e oabe e aabe e aabee e abee e ambeeambeeaabeeebeeeaaneeanbeesnneeennes 7
Y1 = T TP TP PP UPTPTR 11
g ol e o= oo [T 11
LAY TS o= Yo TSRS 11
L0011 01010'= 01T O TP PP OTR PRI 11
Y11 o o 1= TSP RTUURRUSRTR 12
R 2 (= 0= 11O TV UP P TPUR PRI 12
L0010 =T o | £ OO TP UP P PUR PRI 13
SECHONS NGO REIOCALION ...ttt sttt e et h e a e a e st e et e s et e e e e sa e e sa et s an e e b e ea b e e an e e an e eaneenneenne s 16
12 010 01U 0o HA RS RRUPR 16
[0 IS = oo L ST TP OO P ROPROPROPROPRTO 17
AS INEEINAI SECHIONS. ... teetee etttk h bbbt h Rt e h s h et Rt e h et e e et e e et ee Rt ea et e an e e b e s ab e e n e e an e ean e e aneenne s 18
ST oS <ot (o ST TP T TP PP UP TP 18
(0SSR w1 o] o T PO PP ST OPRTOPROPRTO 19
Y11 oo 1= T SRR TOURRSURRRI 20
[0. 1O TSSO P PP OPR PR OPROPRTO 20
GiViNG SYMBDOIS ONEY VAIUES.eiiiii ittt ettt et ettt s b et e sh et e sabe e st e e e be e e aaee e enbeesmbeesabeeeabeeeraneesnneaans 20
Y00 oo A= 0 =SSR TUURRUSRR 20
The SPECIAl DOt SYMII0 ..ottt ettt h et e a e e s bt e et et e ehee e eaee e sabeeeabe e e abee e sabeesabeesnbeeebeeeanneas 21
Y00 oTo I (] o0 1= PR TOURRURRUR 21
VBIUR. ..ottt h e bt h e E e E e E e R e R e R e e R e e AR e e AR e e AR e e AR e e AR e e AR e e AR e e ARe e AR e e eReeeReeeE e e aReenReenReeaReenreenreenreen 22
LY =T PO U PP PRPRTOPPR 22
Y00 oTo I (] o U1 (= S = Wo L | S SRR TUURRSURRR 22
SYMBOl ALFIDULES FOr CORF ...ttt ettt b et h bt e sa b e e st e e e be e e abe e e eabeesmbeesabeeesbeeesnnaesnneans 22
SYMBOl ALFIDULES FOr SOM ... ettt ettt ettt ettt ettt e ebe e e sh et e sabe e s a b e e e be e e ebee e eabeesmbeeeabeeaabeeesnteesnneaans 22
(=== T LSRR 23
0 oA (o1 =SS o TR 23
Fg1eS e S g o =T SRR 23
F o 100 0= o T U PP PP PTPRTOPPR 23
1001 = 1[0 TR TP TOPPRRPTRPPPPRN 23
g TN @0/ g o] SRR 24
10 D@ o= = 1 (0] =TT 24
ASSEMDIEF DITECLIVES ...ttt ettt ettt b e bbbt e s bt e s bt e s bt e s bt e sb e e s b e e sb e e ab e e ab e e nb e e nbeenbeesbeenbeenbeenbeenbeenreenreens 25
MaChing DEPENUENT FEALUIES.........ouei ittt ettt ettt e bt e s bt e e sbe e e sabe e sabeesabeeebeeaabeeesabeesmbeesnbeeannes 36
(67510 X O N @) 1o LSRR 36
Y 1= T T T TP PP PP 37
Y Lol 00 ga F= TS Y o= Y SRR 38
L oz Ui o o o SRR 39

Following is a user guide to the GNU assembler ASMCORE. The origind GNU assembler and
documentation thisis based on was smply called AS. So throughout this manual, any remaining reference to
ASisareferenceto ASMCORE.

Overview

Hereisabrief summary of how to invoke AS-MCORE. For details, see the Command-Line Options section.

as-ncore [-a[dhlns][=file] 1 [-D] [--defsymsynrval]
[-f][--help] [-1 dir] [-3J][-K][-L]
[-oobjfile] [-R] [--statistics] [-v] [-version]
[--version] [-W] [~w] [-x] [-21]
[-- | files ...]
-a[dhins]

Turnonligtings, in any of avariety of ways.

-ad omit debugging directives

-ah include high-level source
-al include assembly

-an omit forms processing
-as include symbols

=file set the name of the ligting file

You may combine these options; for example, use “-an' for assembly listing without forms processing. The
“=file option, if used, must be the last one. By itsdlf, "-a defaultsto “-ahls---that is, al listings turned on.

-D Ignored. Thisoption is accepted for script compatibility with callsto other assemblers.
--defsym sym=value

Define the symbol sym to be vaue before assembling the input file. value must be an integer
congtant. Asin C, aleading "Ox' indicates a hexadecima value, and aleading 0" indicates an

octd vaue.
-f "fagt"---skip whitespace and comment preprocessing (assume source is compiler output).
--help Print a summary of the command line options and exit.
-l dir Add directory dir to the search list for .include directives.
-J Don't warn about signed overflow.
-K I ssue warnings when difference tables atered for long displacements.
-L Keep (in the symbol table) loca symbols, starting with "L".
-0 objfile Name the object-file output from as obyfile.
-R Fold the data section into the text section.

--statistics Print the maximum space (in bytes) and total time (in seconds) used by assembly.
-v or -version Print the asversion.

--version

Print the as version and exit.

Suppress warning messages.

Ignored.

Ignored.

Generate an object file even after errors.
Standard input, or source filesto assemble.

The GNU Assembler

GNU asisredly afamily of assemblers. If you use (or have used) the GNU assembler on one architecture,
you should find a fairly smilar environment when you use it on another architecture. Each verson has much
in common with the others, including object file formats, most assembler directives (often caled pseudo-ops)
and assembler syntax.

as is primarily intended to assemble the output of the GNU C compiler gcc for use by the linker Id.
Nevertheless, welve tried to make as assemble correctly everything that other assemblers for the same
machine would assemble. Any exceptions are documented explicitly (see section Machine Dependent
Features). This doesn't mean as aways uses the same syntax as another assembler for the same architecture;
for example, we know of severa incompatible versions of 680x0 assembly language syntax.

Unlike older assemblers, asis designed to assemble a source program in one pass of the source file. Thishasa
subtle impact on the .org directive (see section .org new-Ic, fill).

Object File Formats

The GNU assembler can be configured to produce severd dternative object file formats. For the most part,
this does not affect how you write assembly language programs; but directives for debugging symbols are
typicaly different in different file formats. See section Symbol Attributes.

On the machine specific, as can be configured to produce either aout or COFF format object files. On the
machine specific, as can be configured to produce either b.out or COFF format object files. On the machine
specific, as can be configured to produce either SOM or ELF format object files.

Command Line

After the program name as, the command line may contain options and file names. Options may appear in any
order, and may be before, after, or between file names. The order of file namesis significant.

“--' (two hyphens) by itself names the standard input file explicitly, as one of thefilesfor asto assemble.

Except for “--' any command line argument that begins with a hyphen (*-') is an option. Each option changes
the behavior of as. No option changes the way another option works. An option is a - followed by one or
more |etters; the case of the letter isimportant. All options are optiond.

Some options expect exactly one file name to follow them. The file name may either immediately follow the
option's letter (compatible with older assemblers) or it may be the next command argument (GNU standard).

These two command lines are equivaent:
as -0 ny-object-file.o munble.s
as -omy-object-file.o munble.s

Input Files

We use the phrase source program, abbreviated source, to describe the program input to one run of as. The
program may be in one or more files; how the source is partitioned into files doesn't change the meaning of
the source.

The source program is a concatenation of thetext in all thefiles, in the order specified.

Each time you run asit assembles exactly one source program. The source program is made up of one or more
files. (The standard input isaso afile.)

You give as a command line that has zero or more input file names. The input files are read (from left file
name to right). A command line argument (in any position) that has no specia meaning is taken to be an input
file name.

If you give as no file names it attempts to read one input file from the as standard input, which is normally
your terminal. Y ou may have to type ctl-D to tell asthereis no more program to assemble.

Use *--' if you need to explicitly name the standard input file in your command line.
If the sourceis empty, as produces asmal, empty object file.
Filenamesand Line-numbers

There are two ways of locating a line in the input file (or files) and either may be used in reporting error
messages. One way refers to a line number in a physical file; the other refers to a line number in a"logica"
file. See section Error and Warning Messages.

Physical files are those files named in the command line given to as.

Logica files are smply names declared explicitly by assembler directives, they bear no relation to physical
files. Logical file names help error messages reflect the original source file, when as source is itsdf
synthesized from other files. See section .app-file string.

Output (Object) File

Every time you run as it produces an output file, which is your assembly language program trandated into
numbers. This file is the object file. Its default name is aout, or b.out when as is configured for the Intel
80960. Y ou can give it another name by using the -0 option. Conventionally, object file names end with ".0'.
The default name is used for historical reasons. older assemblers were capable of assembling self-contained
programs directly into a runnable program. (For some formats, this isn't currently possible, but it can be done
for the a.out format.)

The object file is meant for input to the linker 1d. It contains assembled program code, information to help |d
integrate the assembled program into a runnable file, and (optionally) symbolic information for the debugger.

Error and Warning Messages

as may write warnings and error messages to the standard error file (usudly your termina). This should not
happen when a compiler runs as automatically. Warnings report an assumption made o that as could keep
assembling a flawed program; errors report a grave problem that stops the assembly.

Warning messages have the format
file_name: NNN: War ni ng Message Text

(where NNN isaline number). If alogica file name has been given (see section .gpp-file string) it is used for
the filename, otherwise the name of the current input file is used. If a logicd line number was given (see
section .line line-number) (see section .In line-number) then it is used to caculate the number printed,
otherwise the actud line in the current source file is printed. The message text is intended to be sdf
explanatory (in the grand Unix tradition).

Error messages have the format
file_name: NNN: FATAL: Error Message Text

The file name and line number are derived as for warning messages. The actua message text may be rather
less explanatory because many of them aren't supposed to happen.

Command-Line Options

This chapter describes command-line options available in al versons of the GNU assembler; see section
Machine Dependent Features, for options specific to particular machine architectures.

If you are invoking as via the GNU C compiler (version 2), you can use the "-Wa option to pass arguments
through to the assembler. The assembler arguments must be separated from each other (and the “-Wa) by

commeas. For example:
gcc -c -g -O-Wa,-alh,-L file.c

emitsalisting to standard output with high-level and assembly source.

Usudly you do not need to use this -Wa mechanism, since many compiler command-line options are
automatically passed to the assembler by the compiler. (You can cal the GNU compiler driver with the "-v'
option to see precisely what options it passes toeach compilation pass, including the assembler.)

Enable Listings: -a[dhlns]

These options enable listing output from the assembler. By itsdf, "-a requests high-levd, assembly, and
symbols ligting. You can use other letters to sdect specific options for the ligt: -ah' requests a high-level
language ligting, "-a' requests an output-program assembly listing, and "-as requests a symbol table listing.
High-level listings require that a compiler debugging option like "-g' be used, and that assembly listings (*-d’)
be requested also.

Use the -ad' option to omit debugging directives from the listing.

Once you have specified one of these options, you can further control listing output and its appearance using
thedirectives. | i st, .nolist, .psize, .eject, .title, and.sbttl.The -an' optionturns
off dl forms processing. If you do not request listing output with one of the "-a options, the listing-control
directives have no effect.

The |etters after “-a may be combined into one option, e.g., -an'.
-D

This option has no effect whatsoever, but it is accepted to make it more likely that scripts written for other
assemblers also work with as.

Work Faster: -f

“-f* should only be used when assembling programs written by a (trusted) compiler. “-f' stops the assembler
from doing whitespace and comment preprocessing on the input file(s) before assembling them. See section
Preprocessing.

Warning: if you use "-f' when the files actually need to be preprocessed (if they contain comments, for
example), as does not work correctly.

.include search path: -1 path

Use this option to add a path to the list of directories as searches for files specified in .include directives (see
section .include "file"). You may use -I as many times as necessary to include a variety of paths. The current
working directory is dways searched first; after that, as searches any “-I' directories in the same order as they
were specified (left to right) on the command line.

Difference Tables: -K

as sometimes dters the code emitted for directives of the form “.word syml-sym2'; see section .word
expressions. Y ou can use the -K' option if you want awarning issued when thisis done.

Include Local Labels: -L

Labels beginning with "L (upper case only) are caled local labds. See section Symbol Names. Normally you
do not see such labels when debugging, because they are intended for the use of programs (like compilers)
that compose assembler programs, not for your notice. Normally both as and Id discard such labels, so you do
not normally debug with them.

This option tells asto retain those "L..." symbolsin the object file. Usudly if you do this you aso tell the linker
Id to preserve symbols whose names begin with "L".

By default, aloca labd is any label beginning with "L', but each target is dlowed to redefine the locd label
prefix. On the HPPA locd labels begin with "LS.

Assemble in MRI Compatibility Mode: -M

The -M or --mri option selects MRI compatibility mode. This changes the syntax and pseudo-op handling of
asto make it compatible with the ASM 68K or the ASM 960 (depending upon the configured target) assembler
from Microtec Research. The exact nature of the MRI syntax will not be documented here; see the MRI
manuals for more information. The purpose of this option is to permit assembling existing MRI assembler
code using as.

The MRI compatibility is not complete. Certain operations of the MRI assembler depend upon its object file
format, and can not be supported using other object file formats. Supporting these would require enhancing
each object file format individudly. These are:

globa symbols in common section The m68k MRI assembler supports common sections which are
merged by the linker. Other object file formats do not support this. as handles common sections by
treating them as a single common symbol. It permits loca symbols to be defined within a common
section, but it can not support globa symbols, since it has no way to describe them.

complex relocations The MRI assemblers support relocations againgt a negated section address, and
relocations which combine the start addresses of two or more sections. These are not support by other
object file formats.

END pseudo-op specifying start address The MRI END pseudo-op permits the specification of a start
address. This is not supported by other object file formats. The start address may instead be specified
using the -e option to the linker, or in alinker script.

IDNT, .ident and NAME pseudo-ops The MRI IDNT, .ident and NAME pseudo-ops assign a module
name to the output file. Thisis not supported by other object file formats.

ORG pseudo-op The m68k MRI ORG pseudo-op begins an absolute section a a given address. This
differs from the usua as .org pseudo-op, which changes the location within the current section. Absolute
sections are not supported by other object file formats. The address of a section may be assigned within a
linker script.

There are some other features of the MRI assembler which are not supported by as, typicdly either because
they are difficult or because they seem of little consequence. Some of these may be supported in future
releases.

EBCDIC strings EBCDIC strings are not supported.

packed binary coded decimal Packed binary coded decimal is not supported. This means that the DC.P
and DCB.P pseudo-ops are not supported.

FEQU pseudo-op The m68k FEQU pseudo-op is not supported.
NOOBJ pseudo-op The m68k NOOBJ pseudo-op is not supported.

OPT branch control options The m68k OPT branch control options---B, BRS, BRB, BRL, and BRW---
areignored. as automatically relaxes al branches, whether forward or backward, to an appropriate Sze, s0
these options serve no purpose.

OPT ligt control options The following m68k OPT list control options are ignored: C, CEX, CL, CRE, E,
G, I,M, MEX, MC, MD, X.

other OPT options The following m68k OPT options are ignored: NEST, O, OLD, OP, P, PCO, PCR,
PCS R.

OPT D option is default The m68k OPT D option is the default, unlike the MRI assembler. OPT NOD
may be used to turniit off.

XREF pseudo-op. The m68k XREF pseudo-op isignored.
.debug pseudo-op The 1960 .debug pseudo-op is not supported.

.extended pseudo-op The 1960 .extended pseudo-op is not supported.

= ligt pseudo-op. The various options of the 1960 .list pseudo-op are not supported.
= optimize pseudo-op The 1960 .optimize pseudo-op is not supported.
= output pseudo-op The 960 .output pseudo-op is not supported.

= sefred pseudo-op Thei960 .setred pseudo-op is not supported.
Name the Object File: -0

There is dways one object file output when you run as. By default it has the name “a.out' (or “b.out', for Intel
960 targets only). You use this option (which takes exactly one filename) to give the object file a different
name.

Whatever the object fileis caled, as overwrites any existing file of the same name.

Join Data and Text Sections: -R

-R tells as to write the object file as if al data-section data lives in the text section. This is only done at the
very last moment: your binary data are the same, but data section parts are relocated differently. The data
section part of your object file is zero bytes long because dl its bytes are gppended to the text section. (See
section Sections and Relocation.)

When you specify -R it would be possible to generate shorter address displacements (because we do not have
to cross between text and data section). We refrain from doing this smply for compatibility with older
versons of as. In future, -R may work thisway.

When asis configured for COFF output, this option is only useful if you use sections named ".text' and ".data.

-R isnot supported for any of the HPPA targets. Using -R generates awarning from as.

Display Assembly Statistics: --statistics

Use --datigtics to display two Satistics about the resources used by as the maximum amount of space
alocated during the assembly (in bytes), and the total execution time taken for the assembly (in CPU
seconds).

Announce Version: -v

You can find out what version of as is running by including the option "-v' (which you can aso spdl as -
verson’) on the command line.

Suppress Warnings: -W

as should never give awarning or error message when assembling compiler output. But programs written by
people often cause asto give awarning that a particular assumption was made. All such warnings are directed
to the standard error file. If you use this option, no warnings are issued. This option only affects the warning
messages. it does not change any particular of how as assembles your file. Errors, which stop the assembly,
are dtill reported.

Generate Object File in Spite of Errors: -Z

After an error message, as normally produces no output. If for some reason you are interested in object file
output even after as gives an error message on your program, use the *-Z' option. If there are any errors, as
continues anyways, and writes an object file after a final warning message of the form "n errors, m warnings,
generating bad object file.'

Syntax

This chapter describes the machine-independent syntax allowed in a source file. as syntax is Smilar to what
many other assemblers use; it isingpired by the BSD 4.2 assembler, except that as does not assemble Vax bit-
fields.

Preprocessing
The asinterna preprocessor:

= adjusts and removes extra whitespace. It leaves one space or tab before the keywords on a line, and turns
any otherwhitespace on the lineinto a single space.

= removesal comments, replacing them with asingle space, or an appropriate number of newlines.
= converts character constantsinto the gppropriate numeric values.

It does not do macro processing, include file handling, or anything else you may get from your C compiler's
preprocessor. You can do include file processing with the .include directive (see section .include "fil€"). You
can use the GNU C compiler driver to get other "CPP" style preprocessing, by giving the input file a .S
suffix. See section "Options Controlling the Kind of Output' in Using GNU CC.

Excess whitespace, comments, and character constants cannot be used in the portions of the input text that are
not preprocessed.

If the firgt line of an input file is #NO_APP or if you use the "-f' option, whitespace and comments are not
removed from the input file. Within an input file, you can ask for whitespace and comment remova in
specific portions of the by putting a line that says #APP before the text that may contain whitespace or
comments, and putting aline that says #NO_APP after this text. This feature is mainly intend to support asm
statements in compilers whose output is otherwise free of comments and whitespace.

Whitespace
Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate symbols, and to make

programs nester for people to read. Unless within character constants (see section Character Congtants), any
whitespace means the same as exactly one space.

Comments
There are two ways of rendering comments to as. In both cases the comment is equivalent to one space.
Anything from “/*' through the next “*/' is a comment. This means you may not nest these comments.

/*
The only way to include a newine ("\n') in a coment

is to use this sort of conment.
*/

/* This sort of comment does not nest. */

Anything from the line comment character to the next newline is considered a comment and isignored. The
line comment character sequence on the MCORE family is two forware dashes // same asthe C++ end of line
comment.

The line comment character is '# on the Vax; # on the i960; "!' on the SPARC; | on the 680x0; ;' for the
AMD 29K family; ;' for the H8/300 family; "!" for the H8/500 family; *;' for the HPPA,; "!" for the Hitachi SH;
“I' for the Z8000; see section Machine Dependent Features.

On some machines there are two different line comment characters. One character only begins a comment if it
isthe first non-whitespace character on aline, while the other dways begins a comment.

To be compatible with past assemblers, lines that begin with "# have a specid interpretation. Following the #
should be an absolute expression (see section Expressions): the logical line number of the next line. Then a
string (see section Strings) is dlowed: if present it is a new logica file name. The rest of the ling, if any,
should be whitespace.

If the first non-whitespace characters on the line are not numeric, the line isignored. (Just like a comment.)
This is an ordinary comment.
42-6 "new fil e _nane” # New |l ogical file nane
This is logical line # 36.

Thisfeature is deprecated, and may disappear from future versons of as.

Symbols

A symbol is one or more characters chosen from the set of dl letters (both upper and lower case), digits and
the three characters ~_.$. On most machines, you can aso use $ in symbol names; exceptions are noted in
section Machine Dependent Features. No symbol may begin with a digit. Case is sgnificant. There is no
length limit: al characters are significant. Symbols are delimited by characters not in that set, or by the
beginning of a file (snce the source program must end with a newline, the end of a file is not a possible
symbol delimiter). See section Symbols.

Statements

A statement ends at anewline character ((\n") or an"a" sign (@"). The newline or at sign is considered part of
the preceding statement. Newlines and a signs within character constants are an exception: they do not end
datements. A statement ends a a newline character ('\n) or an exclamation point ('!"). The newline or
exclamation point is consdered part of the preceding statement. Newlines and exclamation points within
character constants are an exception: they do not end statements. A statement ends a a newline character
(C\n"); or (for the H8/300) a dollar sign ($); or (for the Hitachi-SH or the H8/500) a semicolon (7;). The
newline or separator character is condgdered part of the preceding statement. Newlines and separators within
character congtants are an exception: they do not end statements. A statement ends at a newline character (\n’)
or line separator character. (The line separator is usualy ;', unless this conflicts with the comment character;
see section Machine Dependent Features)) The newline or separator character is consdered part of the

preceding statement. Newlines and separators within character constants are an exception: they do not end
statements.

It isan error to end any statement with end-of-file: the last character of any inpuit file should be anewline.

You may write a statement on more than one line if you put a backdash (\) immediately in front of any
newlines within the statement. When as reads a backdashed newline both characters are ignored. You can
even put backdashed newlines in the middle of symbol names without changing the meaning of your source

program.
An empty statement is allowed, and may include whitespace. It isignored.

A statement begins with zero or more labels, optionally followed by a key symbol which determines what
kind of statement it is. The key symbol determines the syntax of the rest of the statement. If the symbol begins
with a dot ".' then the statement is an assembler directive: typicaly vaid for any computer. If the symbol
begins with a letter the statement is an assembly language ingtruction: it assembles into a machine language
ingtruction. Different versons of as for different computers recognize different instructions. In fact, the same
symbol may represent a different ingtruction in a different computer's assembly language.

A labd is a symbol immediaey followed by a colon (:). Whitespace before a label or after a colon is
permitted, but you may not have whitespace between alabd's symbol and its colon. See section Labels.

For HPPA targets, labels need not be immediately followed by a colon, but the definition of a label must

begin in column zero. Thisaso impliesthat only one label may be defined on each line.
| abel : .directive foll owed by sonet hi ng
anot her _| abel : # This is an enpty statenent.
i nstruction operand_1, operand_2,

Constants

A congtant is a number, written so that its value is known by inspection, without knowing any context. Like
this:

.byte 74, 0112, 092, O0x4A, 0X4a, 'J, '\J # Al the sane val ue.

.ascii "Ring the bell\7" # A string constant.

.octa 0x123456789abcdef 0123456789ABCDEFO # A bi gnum

.float 0f-314159265358979323846264338327\

95028841971. 693993751E- 40 # - pi, a flonum

Character Constants

There are two kinds of character constants. A character stands for one character in one byte and its value may
be used in numeric expressions. String constants (properly called string literals) are potentially many bytes
and their values may not be used in arithmetic expressions.

Strings

A gring is written between double-quotes. It may contain double-quotes or null characters. The way to get
gpecia characters into a string is to escape these characters: precede them with a backdash *\' character. For
example "\\' represents one backdash: the first \ is an escgpe which tells as to interpret the second character
literdly as a backdash (which prevents as from recognizing the second \ as an escape character). The
complete list of escapes follows.

\b Mnemonic for backspace; for ASCII thisisocta code 010.

\f Mnemonic for FormFeed; for ASCII thisis octal code 014.

\n Mnemonic for newline; for ASCII thisis octal code 012.

\r Mnemonic for carriage-Return; for ASCII thisis octal code 015.
\t Mnemonic for horizontal Tab; for ASCII thisis octal code 011.
\ digit digit digit

An octal character code. The numeric code is 3 octal digits. For compatibility with other Unix
systems, 8 and 9 are accepted as digits. for example, \008 has the value 010, and \009 the vaue 011.

\x hex-digit hex-digit
A hex character code. The numeric codeis 2 hexadecimal digits. Either upper or lower case x works.

\\ Represents one *\' character.

Represents one ™' character. Needed in strings to represent this character, because an unescaped ™'
would end the string.

\ anything-else

Any other character when escaped by \ gives a warning, but assembles as if the \' was not present.
Theideaisthat if you used an escape sequence you clearly didn't want the litera interpretation of the
following character. However as has no other interpretation, so as knows it is giving you the wrong
code and warns you of the fact.

Which characters are escapable, and what those escapes represent, varies widdy among assemblers. The
current set is what we think the BSD 4.2 assembler recognizes, and is a subset of what most C compilers
recognize. If you are in doubt, do not use an escape sequence.

Characters

A single character may be written as a single quote immediately followed by that character. The same escapes
apply to characters as to strings. So if you want to write the character backdash, you must write \\ where the
first \ escapes the second \. As you can see, the quote is an acute accent, not a grave accent. A newline (or at
sgn @) (or dollar sign °$, for the H8/300; or semicolon ;' for the Hitachi SH or H8/500) immediately
following an acute accent istaken asalitera character and does not count as the end of a statement. The value
of acharacter congtant in a numeric expression is the machine's byte-wide code for that character. as assumes
your character codeis ASCII: 'A means 65, 'B means 66, and so on.

Number Constants

as distinguishes three kinds of numbers according to how they are stored in the target machine. Integers are
numbers that would fit into an int in the C language. Bignums are integers, but they are stored in more than 32
bits. Flonums are floating point numbers, described below.

Integers

A binary integer is "0b' or “0B' followed by zero or more of the binary digits "01".

An octa integer is "0’ followed by zero or more of the octd digits ('01234567").

A decimd integer starts with a non-zero digit followed by zero or more digits ('0123456789).

A hexadecima integer is "'0x' or "OX' followed by one or more hexadecima digits chosen from
"0123456789abcdef ABCDEF.

Integers have the usud vaues. To denote a negative integer, use the prefix operator *-' discussed under
expressons (see section Prefix Operator).

Bignums

A bignum has the same syntax and semantics as an integer except that the number (or its negative) takes more
than 32 bits to represent in binary. The distinction is made because in some places integers are permitted while
bignums are not.

Flonums

A flonum represents a floating point number. The trandation isindirect: adecimal floating point number from
the text is converted by as to a generic binary floating point number of more than sufficient precison. This
generic floating point number is converted to a particular computer's floating point format (or formats) by a
portion of as speciaized to that computer.

A flonum iswritten by writing (in order)

» Thedigit ‘0. (0" isoptiond on the HPPA.)
= A letter, to tell as the rest of the number is a flonum. e is recommended. Case is not important. On the
H8/300, H8/500, Hitachi SH, and AMD 29K architectures, the letter must be one of the letters DFPRSX"

(in upper or lower case). On the Intel 960 architecture, the letter must be one of the letters 'DFT" (in upper
or lower case). On the HPPA architecture, the letter must be "E' (upper case only).

= Anoptiond sign: either "+ or -,

= Anoptiona integer part: zero or more decimd digits.

= Anoptiond fractiona part: .' followed by zero or more decima digits.
= Anoptiona exponent, conssting of:

= An'Eor’e.

= Optiona sign: either "+ or *-'.
= Oneor moredecimd digits.

At least one of the integer part or the fractiona part must be present. The floating point number has the usual
base-10 value.

as does al processing using integers. Flonums are computed independently of any floating point hardware in
the computer running as.

Sections and Relocation

Background

Roughly, a section is arange of addresses, with no gaps; dl data "in" those addresses is treated the same for
some particular purpose. For example there may be a"read only™ section.

The linker |1d reads many object files (partid programs) and combines their contents to form a runnable
program. When as emits an object file, the partia program is assumed to start at address 0. |d assigns the final
addresses for the partid program, so that different partid programs do not overlap. This is actualy an
oversmplification, but it suffices to explain how as uses sections.

Id moves blocks of bytes of your program to their run-time addresses. These blocks dide to ther run-time
addresses as rigid units; their length does not change and neither does the order of bytes within them. Such a
rigid unit is called a section. Assigning run-time addresses to sections is called relocation. It includes the task
of adjusting mentions of object-file addresses so they refer to the proper run-time addresses. For the H8/300
and H8/500, and for the Hitachi SH, as pads sections if needed to ensure they end on a word (Sixteen bit)
boundary.

An object file written by as has at |east three sections, any of which may be empty. These are named text, data
and bss sections.

When it generates COFF output, as can aso generate whatever other named sections you specify using the
".section’ directive (see section .section name, subsection). If you do not use any directives that place output in
the ".text' or ".data sections, these sections dtill exist, but are empty.

When as generates SOM or ELF output for the HPPA, as can aso generate whatever other named sections
you specify using the ".space’ and ".subspace’ directives. See HP9000 Series 800 Assembly Language
Reference Manua (HP 92432-90001) for details on the ".space and ".subspace assembler directives.

Additionally, as uses different names for the standard text, data, and bss sections when generating SOM
output. Program text is placed into the "$CODE$' section, datainto "$DATAS$, and BSSinto "$BSSS.

Within the object file, the text section starts at address O, the data section follows, and the bss section follows
the data section.

When generating either SOM or ELF output files on the HPPA, the text section starts at address O, the data
section at address 0x4000000, and the bss section follows the data section.

To let 1d know which data changes when the sections are relocated, and how to change that data, as aso writes
to the object file details of the relocation needed. To perform relocation Id must know, each time an addressin
the object fileis mentioned:

= Wherein the object file isthe beginning of this reference to an address?
= How long (in bytes) isthis reference?

= Which section does the address refer to? What is the numeric value of
(address) - (start-address of section)?

= |sthereferenceto an address " Program-Counter relative'?
In fact, every address as ever usesis expressed as

(section) + (offset into section)

Further, most expressions as computes have this section-relative nature. (For some object formats, such as
SOM for the HPPA, some expressions are symbol-relative instead.)

In this manual we use the notation { secname N} to mean "offset N into section secname.”

Apart from text, data and bss sections you need to know about the absolute section. When |d mixes partia
programs, addresses in the absolute section remain unchanged. For example, address {absolute O} is
"relocated” to run-time address O by 1d. Although the linker never arranges two partial programs data sections
with overlapping addresses after linking, by definition their absolute sections must overlap. Address { absolute
239} in one part of a program is dways the same address when the program is running as address { absolute
239} in any other part of the program.

The idea of sectionsis extended to the undefined section. Any address whose section is unknown at assembly
time is by definition rendered { undefined U} ---where U isfilled in later. Since numbers are always defined,
the only way to generate an undefined address is to mention an undefined symbol. A reference to a named
common block would be such asymbal: its value is unknown at assembly time o it has section undefined.

By andogy the word section is used to describe groups of sections in the linked program. Id puts adl partia
programs text sections in contiguous addresses in the linked program. It is customary to refer to the text
section of a program, meaning al the addresses of al partid programs text sections. Likewise for data and bss
sections.

Some sections are manipulated by 1d; others are invented for use of as and have no meaning except during
assembly.

Id Sections
Id deals with just four kinds of sections, summarized below.
named sections

text section
data section

These sections hold your program. as and Id treat them as separate but equa sections. Anything you can
say of one section is true another. When the program is running, however, it is customary for the text
section to be undterable. The text section is often shared among processes. it contains ingtructions,
congtants and the like. The data section of a running program is usually aterable: for example, C variables
would be stored in the data section.

bss section

This section contains zeroed bytes when your program begins running. It is used to hold unitidized
variables or common storage. The length of each partial program's bss section is important, but because it
gtarts out containing zeroed bytes there is no need to store explicit zero bytes in the object file. The bss
section was invented to eiminate those explicit zeros from object files.

absolute section

Address 0 of this section is dways "relocated” to runtime address 0. Thisis useful if you want to refer to
an address that 1d must not change when relocating. In this sense we speak of absolute addresses being
"unrel ocatable": they do not change during relocation.

undefined section

This"section” is acatch-all for address references to objects not in the preceding sections.

An idedlized example of three relocatable sections follows. The example uses the traditional section names
“text' and ".data. Memory addresses are on the horizonta axis.

as Internal Sections

These sections are meant only for the internal use of as. They have no meaning at run-time. Y ou do not really
need to know about these sections for most purposes; but they can be mentioned in as warning messages, so it
might be helpful to have an idea of their meanings to as. These sections are used to permit the value of every
expression in your assembly language program to be a section-relative address.

ASSEMBLER- | NTERNAL- LOG G ERRCR!

Aninterna assembler logic error has been found. This meansthereisabug in the assembler.

expr section

The assembler stores complex expresson internaly as combinations of symbols. When it needs to
represent an expression asasymboal, it putsit in the expr section.

Sub-Sections

Assembled bytes conventionally fall into two sections: text and data. Y ou may have separate groups of datain
named sections text or data that you want to end up near to each other in the object file, even though they are
not contiguous in the assembler source. as alows you to use subsections for this purpose. Within each
section, there can be numbered subsections with values from 0 to 8192. Objects assembled into the same
subsection go into the object file together with other objects in the same subsection. For example, a compiler

might want to store congtants in the text section, but might not want to have them interspersed with the
program being assembled. In this case, the compiler could issue a ".text O' before each section of code being
output, and a ".text 1' before each group of constants being output.

Subsections are optiond. If you do not use subsections, everything goes in subsection number zero.

Each subsection is zero-padded up to amultiple of four bytes. (Subsections may be padded a different amount
on different flavors of as))

Subsections appear in your object filein numeric order, lowest numbered to highest. (All thisto be compatible
with other people's assemblers) The object file contains no representation of subsections; I1d and other
programs that manipulate object files see no trace of them. They just see dl your text subsections as a text
section, and al your data subsections as a data section.

To specify which subsection you want subsequent statements assembled into, use a numeric argument to
specify it, in a .text expression’ or a ".data expression’ statement. When generating COFF output, you can dso
use an extra subsection argument with arbitrary named sections. ".section name, expression’. Expression
should be an absolute expression. (See section Expressions.) If you just say “.text' then ".text O' is assumed.
Likewise ".data means ".data 0'. Assembly beginsin text 0. For instance:

.text O # The default subsection is text 0 anyway.
.ascii "This lives in the first text subsection. *"
.text 1

.ascii "But this lives in the second text subsection.”
.data 0

.ascii "This lives in the data section,"

.ascii "in the first data subsection.”

.text O

.ascii "This lives in the first text section,"”

.ascii "imediately followi ng the asterisk (*)."

Each section has a location counter incremented by one for every byte assembled into that section. Because
subsections are merely a convenience redtricted to as there is no concept of a subsection location counter.
There is no way to directly manipulate a location counter--but the .aign directive changes it, and any label
definition captures its current value. The location counter of the section where statements are being assembled
is said to be the active location counter.

bss Section

The bss section is used for loca common variable storage. Y ou may alocate address space in the bss section,
but you may not dictate data to load into it before your program executes. When your program starts running,
all the contents of the bss section are zeroed bytes.

Addressesin the bss section are alocated with specia directives, you may not assemble anything directly into
the bss section. Hence there are no bss subsections. See section .comm symboal , length , see section .lcomm
symbol , length.

Symbols

Symbols are a central concept: the programmer uses symbols to name things, the linker uses symbolsto link,
and the debugger uses symbols to debug.

Warning: as does not place symbals in the object file in the same order they were declared. This may
break some debuggers.

Labels

A label is written as a symbol immediately followed by a colon ™:'. The symbol then represents the current
vaue of the active location counter, and is, for example, a suitable ingtruction operand. You are warned if you
use the same symbol to represent two different locations: the first definition overrides any other definitions.

On the HPPA, the usua form for alabel need not be immediately followed by a colon, but instead must start
in column zero. Only one label may be defined on asingle line. To work around this, the HPPA version of as
also provides a specia directive .labdl for defining labels more flexibly.

Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an equas sign "=, followed by an
expression (see section Expressions). This is equivadent to using the .set directive. See section .set symboal,
expression.

Symbol Names

Symbol names begin with aletter or with one of *._'. On most machines, you can dso use $ in symbol names,
exceptions are noted in section Machine Dependent Features. That character may be followed by any string of
digits, letters, dollar signs (unless otherwise noted in section Machine Dependent Features), and underscores.
For the AMD 29K family, *? isaso alowed in the body of asymbol name, though not at its beginning.

Case of lettersis significant: foo is adifferent symbol name than Foo.

Each symbol has exactly one name. Each name in an assembly language program refers to exactly one
symbol. Y ou may use that symbol name any number of timesin a program.

Local Symbol Names

Loca symbols help compilers and programmers use names temporarily. There are ten local symbol names,
which are re-used throughout the program. Y ou may refer to them using the names 0" '1' ... '9". To define a
local symbol, write alabel of the form "N:' (where N represents any digit). To refer to the most recent previous
definition of that symbol write "Nb', using the same digit as when you defined the labdl. To refer to the next
definition of aloca label, write "Nf'---where N gives you a choice of 10 forward references. The "b' stands for
"backwards' and the “f' stands for "forwards'.

Local symbols are not emitted by the current GNU C compiler.

There is no restriction on how you can use these labels, but remember that at any point in the assembly you
can refer to at most 10 prior loca labels and to a most 10 forward local 1abels.

Local symbol names are only a notation device. They are immediately transformed into more conventiona
symbol names before the assembler uses them. The symbol names stored in the symbol table, appearing in

error messages and optionally emitted to the object file have these parts:
L

All loca labels begin with "L'. Normally both as and Id forget symbols that start with "L'. These labels
are used for symbols you are never intended to see. If you use the "-L' option then as retains these
symbols in the object file. If you also ingruct Id to retain these symbols, you may use them in
debugging.

di git
If the label iswritten "0:' then the digit is "0 If the labdl iswritten "1." then the digit is '1'. And so on up
through "9:".

A
This unusua character is included so you do not accidentally invent a symbol of the same name. The

character has ASCII value "\001'.
ordi nal nunber

Thisisasearia number to keep the labds distinct. Thefirst "0:" gets the number "1'; The 15th "0:' gets the
number "15'; etc.. Likewise for the other labels "1:" through "9:'.

For instance, the first 1: isnamed L1MA 1L, the 44th 3: isnamed L3MA44.

The Special Dot Symbol

The specid symbol . refers to the current address that as is assembling into. Thus, the expresson "melvin:
Jong ." defines melvin to contain its own address. Assigning avalue to . istreated the same as a .org directive.
Thus, the expression ".=.+4' isthe same as saying ".gpace 4'.

Symbol Attributes

Every symbol has, as well as its name, the attributes "Vaue' and "Type'. Depending on output format,
symbols can aso have auxiliary attributes.

If you use a symbol without defining it, as assumes zero for dl these attributes, and probably won't warn you.
This makes the symbol an externally defined symbol, which is generally what you would want.

= Symbol Vaue Vaue

= Symbol Type: Type

= a.out Symbols: Symbol Attributes: a.out

= a.out Symbols: Symbol Attributes: a.out, b.out

= COFF Symbols: Symbol Attributes for COFF
= SOM Symbols: Symbol Attributes for SOM

Value

The vaue of a symbal is (usualy) 32 hits. For a symbol which labels a location in the text, data, bss or
absolute sections the value is the number of addresses from the start of that section to the label. Naturdly for
text, data and bss sections the vaue of a symbol changes as |d changes section base addresses during linking.
Absolute symbols vaues do not change during linking: that is why they are called absolute.

The value of an undefined symbal is treated in a specia way. If it is O then the symbol is not defined in this
assembler source file, and Id tries to determine its value from other files linked into the same program. You
make this kind of symbol smply by mentioning a symbol name without defining it. A non-zero vaue

represents a .comm common declaration. The vaue is how much common storage to reserve, in bytes
(addresses). The symbol refersto the first address of the alocated storage.

Type
The type atribute of a symbol contains relocation (section) information, any flag settings indicating that a

symbol is externd, and (optionally), other information for linkers and debuggers. The exact format depends
on the object-code output format in use.

Symbol Attributes: a.out
Symbol Desc: Descriptor

Thisisan arbitrary 16-bit value. Y ou may establish a symbol's descriptor vaue by using a .desc statement
(see section .desc symbol, abs-expression). A descriptor va ue means nothing to as.

Symbol Other: Other

Thisisan arbitrary 8-bit value. It means nothing to as.

Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol attributes; like the primary symbol attributes, they
are set between .def and .endef directives.

Primary Attributes
The symbol nameis set with .def; the value and type, respectively, with .val and .type.
Auxiliary Attributes

The asdirectives .dim, .line, .scl, .9ze, and .tag can generate auxiliary symbol table information for COFF.

Symbol Attributes for SOM

The SOM format for the HPPA supports a multitude of symbol attributes set with the .EXPORT and
IMPORT directives.

The attributes are described in HP9000 Series 800 Assembly Language Reference Manua (HP 92432-90001)
under the IMPORT and EXPORT assembler directive documentation.

Expressions
An expression specifies an address or numeric value. Whitespace may precede and/or follow an expression.

The result of an expresson must be an absolute number, or else an offset into a particular section. If an
expression is not absolute, and there is not enough information when as sees the expression to know its
section, a second pass over the source program might be necessary to interpret the expression--but the second
pass is currently not implemented. as aborts with an error message in this situation.

Empty Expressions
An empty expression has no vaue: it is just whitespace or null. Wherever an absolute expression is required,

you may omit the expresson, and as assumes a vaue of (absolute) 0. This is compatible with other
assemblers.

Integer Expressions

An integer expression is one or more arguments delimited by operators.

Arguments

Arguments are symbols, numbers or subexpressions. In other contexts arguments are sometimes called
"arithmetic operands'. In this manual, to avoid confusing them with the "instruction operands' of the machine
language, we use the term "argument” to refer to parts of expressions only, reserving the word "operand” to
refer only to machine instruction operands.

Symbols are evaluated to yield { section NNN} where section is one of text, data, bss, absolute, or undefined.
NNN isasigned, 2's complement 32 bit integer.

Numbers are usudly integers.

A number can be a flonum or bignum. In this case, you are warned that only the low order 32 bits are used,
and as pretends these 32 bits are an integer. Y ou may write integer-manipulating instructions that act on exotic
congtants, compatible with other assemblers.

Subexpressions are a left parenthesis (' followed by an integer expression, followed by aright parenthesis °)';
or aprefix operator followed by an argument.

Operators

Operators are arithmetic functions, like + or %. Prefix operators are followed by an argument. Infix operators
appear between their arguments. Operators may be preceded and/or followed by whitespace.

Prefix Operator

as hasthe following prefix operators. They each take one argument, which must be absolute.

Negation. Twao's complement negation.

Complementation. Bitwise not.

Infix Operators

Infix operators take two arguments, one on either sSide. Operators have precedence, but operations with equa
precedence are performed left to right. Apart from + or -, both arguments must be absolute, and the result is
absolute.

1. Highest Precedence

*

/
%
<
<<
>

>>

Multiplication.

Divison. Truncation isthe same as the C operator /'

Remainder.

Shift Left. Same asthe C operator "<<'.

Shift Right. Same as the C operator ">>'.

2. Intermediate precedence

I
&

Bitwise Inclusive Or.
Bitwise And.

Bitwise Exclusive Or.
Bitwise Or Not.
Lowest Precedence

Addition. If either argument is absolute, the result has the section of the other argument. Y ou may not
add together arguments from different sections.

Subtraction. If the right argument is absolute, the result has the section of the left argument. If both
arguments are in the same section, the result is absolute. You may not subtract arguments from
different sections.

In short, it's only meaningful to add or subtract the offsets in an address; you can only have a defined section
in one of the two arguments.

Assembler Directives

All assembler directives have names that begin with a period (°."). The rest of the name is letters, usualy in
lower case.

This chapter discusses directives that are available regardless of the target machine configuration for the GNU
assembler. Some machine configurations provide additional directives. See section Machine Dependent
Features.

. abort This directive stops the assembly immediately. It isfor compatibility with other assemblers.
The origina ideawas that the assembly language source would be piped into the assembler.
If the sender of the source quit, it could use this directive tdls as to quit dso. One day
.abort will not be supported.

. ABCORT When producing COFF output, as accepts this directive as a synonym for ".abort'.
When producing b.out output, as accepts this directive, but ignoresit.

.align Pad the location counter (in the current subsection) to a particular storage boundary. The
abs-expr, | firgt expresson (which must be absolute) is the alignment required, as described below.
abs- expr The second expression (also absolute) gives the value to be stored in the padding bytes. It
(and the comma) may be omitted. If it is omitted, the padding bytes are zero.

The way the required aignment is specified varies from system to system. For the a29k,
hppa, m86k, m88k, w65, sparc, and Hitachi SH, and i386 using ELF format, the first
expression is the aignment request in bytes. For example ".dign 8 advances the location
counter until it is a multiple of 8. If the location counter is dready a multiple of 8, no
change is needed.

For other systems, including the 1386 using a.out format, it is the number of low-order zero
bits the location counter must have after advancement. For example ".aign 3' advances the
location counter until it amultiple of 8. If the location counter is dready a multiple of 8, no
change is needed.

This inconsstency is due to the different behaviors of the various native assemblers for
these syslems which GAS must emulate.

GAS dso provides .baign and .p2align directives, described later, which have a consstent
behavior across all architectures (but are specific to GAS).

.app-file | .appfile (which may also be spelled " file) tells as that we are about to start a new logical
string file. tring is the new file name. In generd, the filename is recognized whether or not it is
surrounded by quotes ™'; but if you wish to specify an empty file name is permitted, you
must give the quotes--"". This statement may go away in future: it is only recognized to be
compatible with old as programs.

.ascii .asCii expects zero or more string literas (see section Strings) separated by commeas. It
"string" assembles each string (with no automatic trailing zero byte) into consecutive addresses.

.asciz astiz isjust like .ascii, but each gtring is followed by a zero byte. The "z" in ".asciz' stands
"string" for "zero".
.balign Pad the location counter (in the current subsection) to a particular storage boundary. The
abs-expr, | first expresson (which must be absolute) is the dignment request in bytes. For example
abs- expr “.balign 8 advances the location counter until it is a multiple of 8. If the location counter is
aready amultiple of 8, no change is needed.
The second expression (also absolute) gives the value to be stored in the padding bytes. It
(and the comma) may be omitted. If it is omitted, the padding bytes are zero.
. byte Dbyte expects zero or more expressons, separated by commas. Each expresson is
expressi o | assembled into the next byte.
ns
. comm .comm declares a named common area in the bss section. Normally |d reserves memory
synbol , addresses for it during linking, so no partia program defines the location of the symbol.
I ength Use .comm to tell Id that it must be at least length bytes long. Id dlocates space for each

.comm symbol that is at least as long as the longest .comm request in any of the partial
programs linked. length is an absolute expression.

The syntax for .comm differs dightly on the HPPA. The syntax is “symbol .comm, length’;
symbol is optional.

. dat a

.data tells as to assemble the following statements onto the end of the data subsection

subsecti o | numbered subsection (which is an absolute expression). If subsection is omitted, it defaults

n to zero.

. def name | Begin defining debugging information for a symbol name; the definition extends until the
.endef directive is encountered.

This directive is only observed when as is configured for COFF format output; when
producing b.out, ".def' is recognized, but ignored.

. desc This directive sets the descriptor of the symbol (see section Symbol Attributes) to the low

synbol , 16 bits of an absolute expression.

abs- expr
The ".deC' directive is not available when as is configured for COFF output; it is only for
aout or b.out object format. For the sake of compatibility, as accepts it, but produces no
output, when configured for COFF.

.dim This directive is generated by compilers to include auxiliary debugging information in the
symbol table. It isonly permitted insde .def/.endef pairs.
~.dim' is only meaningful when generating COFF format output; when as is generating
b.out, it accepts this directive but ignoresiit.

. doubl e .double expects zero or more flonums, separated by commas. It assembles floating point

fl onuns numbers. The exact kind of floating point numbers emitted depends on how as is
configured. See section Machine Dependent Features.

. €j ect Force apage break at this point, when generating assembly listings.

.el se eseispart of the as support for conditional assembly; see section .if absolute expression. It
marks the beginning of a section of code to be assembled if the condition for the preceding
if wasfdse

. endef This directive flags the end of asymbol definition begun with .def.

“.endef' is only meaningful when generating COFF format output; if as is configured to
generate b.out, it accepts this directive but ignoresit.

.endi f .endif is part of the as support for conditional assembly; it marks the end of a block of code
that is only assembled conditionaly. See section .if absolute expression.

. equ This directive sets the value of symbol to expression. It is synonymous with ".set’; see

synbol , section .set symbol, expression.

expressio

n The syntax for equ on the HPPA is "symbol .equ expression'.

.extern .extern is accepted in the source program—for compatibility with other assemblers--but it is
ignored. astreats dl undefined symbols as externd.

file file (which may aso be spelled ".app-fil€) tells as that we are about to start a new logica

string

file. tring is the new file name. In generd, the filename is recognized whether or not it is
surrounded by quotes ™'; but if you wish to specify an empty file name, you must give the
guotes-"". This statement may go away in future: it is only recognized to be compatible
with old as programs. In some configurations of as, .file has aready been removed to avoid
conflicts with other assemblers. See section Machine Dependent Features.

il
r epeat :
si ze ,
val ue

repeat, size and vadue are absolute expressons. This emits repeat copies of Sze bytes.
Repeat may be zero or more. Size may be zero or more, but if it is more than 8, then it is
deemed to have the value 8, compatible with other people's assemblers. The contents of
each repedat bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The
lowest order 4 bytes are value rendered in the byte-order of an integer on the computer asis
assembling for. Each size bytes in a repetition is taken from the lowest order size bytes of
this number. Again, this bizarre behavior is compatible with other people's assemblers.

size and vaue are optiond. If the second comma and vaue are absent, value is assumed
zero. If the first commaand following tokens are absent, Szeisassumed to be 1.

. fl oat
fl onuns

This directive assembles zero or more flonums, separated by commes. It has the same effect
as .gngle. The exact kind of floating point numbers emitted depends on how as is
configured. See section Machine Dependent Features.

. gl obal
synbol ,
. gl obl
synbol

.globa makes the symbol vigble to Id. If you define symbol in your partial program, its
vaue is made available to other partid programs that are linked with it. Otherwise, symbol
takes its attributes from a symbol of the same name from another file linked into the same

program.
Both spellings (".globl' and ".global’) are accepted, for compatibility with other assemblers.

On the HPPA, .global is not dways enough to make it accessible to other partid programs.
You may need the HPPA-only .EXPORT directive as well. See section HPPA Assembler
Directives.

. hword
expressio
ns

This expects zero or more expressions, and emits a 16 bit number for each.

This directive is a synonym for ".short’; depending on the target architecture, it may aso be
asynonym for ".word'.

.1 dent

This directive is used by some assemblers to place tags in object files. as smply acceptsthe
directive for source-file compatibility with such assemblers, but does not actualy emit
anything for it.

i f

absol ute
expressio
n

If marks the beginning of a section of code which is only consdered part of the source
program being assembled if the argument (which must be an absolute expression) is non-
zero. The end of the conditiona section of code must be marked by .endif (see section
.endif); optionaly, you may include code for the aternative condition, flagged by .else (see
section .dse.

Thefollowing variants of .if are also supported:

.1 fdef synbol

Assembles the following section of code if the specified symbol has been defined.

.1 fndef synbol
i f not def synbol

Assembles the following section of code if the specified symbol has not been
defined. Both spdlling variants are equivaent.

.include This directive provides a way to include supporting files at specified points in your source
"“file" program. The code from file is assembled as if it followed the point of the .include; when
the end of the included file is reached, assembly of the origind file continues. You can
control the search paths used with the “-I' command-line option (see section Command-
Line Options).
Quotation marks are required around file.
.int Expect zero or more expressons, of any section, separated by commas. For each
expressi 0 | expression, emit a number that, at run time, is the vaue of that expression. The byte order
ns and bit sze of the number depends on what kind of target the assembly isfor.
rp Evauate a sequence of statements assigning different values to symbol. The sequence of
synbol , statements starts a the .irp directive, and is terminated by an .endr directive. For each value,
val ues. .. | symbol isset to value, and the sequence of statementsis assembled. If no vaueislisted, the
sequence of statements is assembled once, with symbol set to the null string. To refer to
symbol within the sequence of statements, use \symbol.
For example, assembling
Lirp param1, 2, 3
nove d\ param sp@
. endr
isequivalent to assembling
nove dl, sp@
nove d2, sp@
nove d3, sp@
.irpc Evauate a sequence of statements assigning different values to symbol. The sequence of
synbol , satements Starts at the .irpc directive, and is terminated by an .endr directive. For each
val ues. .. | character in vaue, symbol is st to the character, and the sequence of Statements is
assembled. If no valueis listed, the sequence of statements is assembled once, with symbol
set to the null string. To refer to symbol within the sequence of statements, use \symbol.
For example, assembling
.irpc param 123
nove d\ param sp@
. endr
isequivalent to assembling
nove dl, sp@
nove d2, sp@
nove d3, sp@
. comm Reserve length (an absolute expression) bytes for aloca common denoted by symbol. The

synbol :
| ength

section and vadue of symbol are those of the new loca common. The addresses are
alocated in the bss section, so that at run-time the bytes start off zeroed. Symbol is not
declared global (see section .globa symboal, .globl symboal), so isnormally not visbleto Id.

The syntax for .Icomm differs dightly on the HPPA. The syntax is "symbol .lcomm,
length'; symbal is optiond.

.1 flags

as accepts this directive, for compatibility with other assemblers, but ignoresit.

.line
i ne-
nunber

or
.In

i ne-
nunber

Change the logica line number. line-number must be an absolute expression. The next line
has that logicd line number. Therefore any other statements on the current line (after a
statement separator character) are reported as on logical line number line-number - 1. One
day as will no longer support this directive: it is recognized only for compatibility with
existing assembler programs.

Warning: In the AMD29K configuration of as, this command is not available; use the
synonym .In in that context.

Even though thisis a directive associated with the aout or b.out object-code formats, as still
recognizes it when producing COFF output, and treats ".line' as though it were the COFF
“In"if it isfound outside a .def/.endef pair.

Inside a.def, ".line' is, instead, one of the directives used by compilers to generate auxiliary
symbol information for debugging.

st

Control (in conjunction with the .nolist directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initidly). list
increments the counter, and .nolist decrementsit. Assembly listings are generated whenever
the counter is grester than zero.

By default, listings are disabled. When you enable them (with the -a command line option,
see section Command-Line Options), the initid value of the listing counter is one.

.l ong
expressio
ns

longisthesameas ".int', see section .int expressions.

. macro

The commands .macro and .endm dlow you to define macros that generate assembly
output. For example, this definition specifies a macro sum that puts a sequence of numbers
into memory:

.macro sum fronm=0,

.1 ong \from

Jf \to-\from
"(\froml)", \to

t o=5

sum
.endif
. endm

With that definition, "SUM 0,5' is equivaent to this assembly input:
.1 ong
.1 ong
.1 ong
.1 ong
.1 ong

A WNEFO

.1 ong 5

.macro machame
.macro macname macargs ...

Begin the definition of a macro caled macname. If your macro definition requires
arguments, specify their names after the macro name, separated by commas or
gpaces. You can supply a default vaue for any macro argument by following the
name with "=deflt'. For example, these are dl valid .macro statements:

.macro comm
Begin the definition of a macro called comm, which takes no arguments.

.macro plusl p, pl
.macro pluslppl

Either statement begins the definition of a macro caled plusl, which takes
two arguments; within the macro definition, write "\p' or "\pl' to evauate the
arguments.

.macro reserve_str p1=0p2

Begin the definition of a macro cdled reserve dr, with two arguments. The
first argument has a default value, but not the second. After the definition is
complete, you can cdl the macro either as ‘reserve str ab' (with "\pl'
evaluating to a and "\p2' evaluating to b), or as reserve gr b’ (with “\pl'
evauating asthe default, in this case "0, and "\p2' evaluating to b).

When you cal a macro, you can specify the argument vaues either by position, or
by keyword. For example, "sum 9,17' is equivalent to “sum to=17, from=9'.

.endm
Mark the end of amacro definition.

.exitm
Exit early from the current macro definition.

\@

as maintains a counter of how many macros it has executed in this pseudo-variable;
you can copy that number to your output with \@', but only within a macro
definition.

. hol i st

Control (in conjunction with the .list directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initidly). list
increments the counter, and .nolist decrementsit. Assembly listings are generated whenever
the counter is greater than zero.

.octa
bi gnuns

This directive expects zero or more bignums, separated by commas. For each bignum, it
emits a 16-byte integer. The term "octa' comes from contexts in which a "word" is two
bytes, hence octa-word for 16 bytes.

.org
new| c ,
fill

Advance the location counter of the current section to new-Ic. new-Ic is either an absolute
expression or an expression with the same section as the current subsection. That is, you
can't use .org to cross sections: if new-Ic has the wrong section, the .org directive isignored.
To be compatible with former assemblers, if the section of new-Ic is absolute, as issues a
warning, then pretends the section of new-Ic isthe same as the current subsection.

.org may only increase the location counter, or leave it unchanged; you cannot use .org to
move the location counter backwards.

Because as tries to assemble programs in one pass, new-Ic may not be undefined. If you
really detest this restriction we eagerly await a chance to share your improved assembler.

Beware that the origin isrelative to the start of the section, not to the start of the subsection.
Thisis compatible with other peopl€'s assemblers.

When the location counter (of the current subsection) is advanced, the intervening bytes are
filled with fill which should be an absolute expression. If the comma and fill are omitted,
fill defaultsto zero.

. p2align
abs- expr

: abs-
expr

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expresson (which must be absolute) is the number of low-order zero bits the location
counter must have after advancement. For example ".p2aign 3 advances the location
counter until it amultiple of 8. If the location counter is adready a multiple of 8, no change
IS needed.

The second expression (also absolute) gives the value to be stored in the padding bytes. It
(and the comma) may be omitted. If it is omitted, the padding bytes are zero.

. psi ze
i nes ,
col unns

Use this directive to declare the number of lines--and, optiondly, the number of columns--
to use for each page, when generating listings.

If you do not use .psize, listings use a default line-count of 60. You may omit the comma
and columns specification; the default width is 200 columns.

as generates formfeeds whenever the specified number of lines is exceeded (or whenever
you explicitly request one, using .gect). If you specify lines as 0, no formfeeds are
generated save those explicitly specified with .gect.

. quad
bi gnuns

.quad expects zero or more bignums, separated by commas. For each bignum, it emits an 8-
byte integer. If the bignum won' fit in 8 bytes, it prints a warning message; and just takes
the lowest order 8 bytes of the bignum.

Theterm "quad" comes from contexts in which a"word" istwo bytes, hence quad-word for
8 bytes.

. rept
count

Repeat the sequence of lines between the .rept directive and the next .endr directive count
times.

For example, assembling
.rept 3
.1 ong 0

. endr

isequivaent to assembling

.1 ong 0
.1 ong 0
.1 ong 0
.sbttl Use subheading as the title (third line, immediately after the title line) when generating
"subheadi | assambly listings.
ng"
This directive affects subsequent pages, as well as the current page if it appears within ten
lines of the top of apage.
. scl Set the storage-class vadue for a symbol. This directive may only be used insde a
cl ass .def/.endef pair. Storage class may flag whether a symbol is Static or externd, or it may
record further symbolic debugging information.
The ".scl' directive is primarily associated with COFF output; when configured to generate
b.out output format, as accepts this directive but ignoresit.
.section Assemble the following code into end of subsection numbered subsection in the COFF
nane, named section name. If you omit subsection, as uses subsection number zero. ".section .text'
subsecti o | isequivaent to the .text directive; ".section .datd is equivalent to the .data directive. This
n directive is only supported for targets that actualy support arbitrarily named sections; on
aout targets, for example, it is not accepted, even with a sandard a.out section name as its
parameter.
. set Set the value of symbol to expression. This changes symbol's value and type to conform to
synbol , expression. If symbol was flagged as externd, it remains flagged. (See section Symbol
expressi o | Attributes)
n
Y ou may .set a symbol many times in the same assembly. If you .set agloba symbal, the
vaue stored in the object file isthe last value stored into it.
The syntax for set on the HPPA is "symbol .set expression'.
. short .short is normdly the same as ".word'. See section .word expressions.
expressio
ns In some configurations, however, .short and .word generate numbers of different lengths;
see section Machine Dependent Features.
.single This directive assembles zero or more flonums, separated by commes. It has the same effect
fl onuns as float. The exact kind of floating point numbers emitted depends on how as is
configured. See section Machine Dependent Features.
.Sl ze This directive is generated by compilers to include auxiliary debugging information in the
symbol table. It isonly permitted insde .def/.endef pairs.
".gz€ is only meaningful when generating COFF format output; when as is generating
b.out, it accepts this directive but ignoresiit.
. Space This directive emits Size bytes, each of vauefill. Both size and fill are absolute expressions.

si ze If the comma and fill are omitted, fill is assumed to be zero.
fill
Warning: In most versions of the GNU assembler, the directive .space has the effect
of .block See section Machine Dependent Features.
. st abd, There are three directives that begin ".stab'. All emit symbols (see section Symbols), for use
. st abn, by symbolic debuggers. The symbols are not entered in the as hash table: they cannot be
. st abs referenced el sawhere in the source file. Up to five fields are required:

string

This is the symbol's name. It may contain any character except \000', so is more
generd than ordinary symbol names. Some debuggers used to code arbitrarily
complex structuresinto symbol names using thisfield.

type

An absolute expression. The symbol's type is set to the low 8 hits of this expression.
Any bit pattern is permitted, but Id and debuggers choke on silly bit patterns.

other

An absolute expression. The symbol's "other” attribute is set to the low 8 bits of this
expression.

desc

An absolute expression. The symbol's descriptor is set to the low 16 bits of this
expression.

value
An absolute expression which becomes the symbol's value.

If awarning is detected while reading a .stabd, .stabn, or .stabs statement, the symbol has
probably aready been created; you get a half-formed symbol in your object file. This is
compatible with earlier assemblers!

.stabd type , other , desc

The "name" of the symbol generated is not even an empty string. It is a null pointer,
for compatibility. Older assemblers used a null pointer so they didn't waste space in
object files with empty strings. The symbol's value is set to the location counter,
relocatably. When your program is linked, the value of this symbol is the address of
the location counter when the .stabd was assembled.

.stabn type , other , desc , val ue

The name of the symboal is set to the empty string "'

.stabs string , type , other , desc , value

All fivefields are specified.

.string Copy the charactersin gir to the object file. You may specify more than one string to copy,
"str” separated by commas. Unless otherwise specified for a particular machine, the assembler
marks the end of each string with a O byte. You can use any of the escape sequences
described in section Strings.
.tag This directive is generated by compilers to include auxiliary debugging information in the
struct nam | symbol table. It is only permitted inside .def/.endef pairs. Tags are used to link structure
e definitionsin the symbol table with instances of those structures.
“tag' is only used when generating COFF format output; when as is generating b.out, it
accepts this directive but ignoresiit.
. text Tells as to assemble the following statements onto the end of the text subsection numbered
subsecti o | subsection, which is an absolute expression. If subsection is omitted, subsection number
n zeroisused.
title Use heading as the title (second line, immediately after the source file name and
“headi ng" | pagenumber) when generating assembly listings.
This directive affects subsequent pages, as well as the current page if it appears within ten
lines of the top of a page.
.type int | This directive, permitted only within .def/.endef pairs, records the integer int as the type
attribute of a symbol table entry.
“type is associated only with COFF format output; when as is configured for b.out output,
it accepts this directive but ignoresiit.
.val addr | Thisdirective, permitted only within .def/.endef pairs, records the address addr as the value
attribute of a symbol table entry.
“.va'" isused only for COFF output; when asis configured for b.out, it accepts this directive
but ignoresit.
.wor d This directive expects zero or more expressions, of any section, separated by commas.
expressio
ns The size of the number emitted, and its byte order, depend on what target computer the

assembly isfor.
Warning: Specid Treatment to support Compilers

Machines with a 32-bit address space, but that do less than 32-bit addressing, require the
following specia treatment. If the machine of interest to you does 32-bit addressing (or
doesn't require it; see section Machine Dependent Features), you can ignore thisissue.

In order to assemble compiler output into something that works, as occasionlly does strange
things to ".word' directives. Directives of the form ".word syml-sym2' are often emitted by
compilers as part of jump tables. Therefore, when as assembles a directive of the form

“.word syml-sym2, and the difference between syml and sym2 does not fit in 16 bits, as
creates a secondary jump table, immediately before the next labdl. This secondary jump
table is preceded by a short-jump to the first byte after the secondary table. This short-jump
prevents the flow of control from accidentaly falling into the new table. Insde thetableisa
long-jump to sym2. The origina ".word' contains sym1 minus the address of the long-jump
to sym2.

If there were severa occurrences of “.word syml-sym2' before the secondary jump table,
al of them are adjusted. If there was a ".word sym3-sym4', that aso did not fit in sixteen
bits, a long-jump to sym4 is included in the secondary jump table, and the .word directives
are adjusted to contain sym3 minus the address of the long-jump to symd4; and so on, for as
many entriesin the origina jump table as necessary.

Machine Dependent Features

The machine ingtruction sets are (amost by definition) different on each machine where as runs. Foating
point representations vary as well, and as often supports a few additional directives or command-line options
for compatibility with other assemblers on a particular platform. Finally, some versions of as support specia
pseudo-ingtructions for branch optimization.

This chapter discusses most of these differences, though it does not include details on any machine's
instruction set. For details on that subject, see the hardware manufacturer's manual.

M680x0 Options

The Motorola 680x0 version of as has a few machine dependent options. You can use the -I' option to
shorten the size of references to undefined symboals. If you do not use the “-I' option, references to undefined
symbols are wide enough for afull long (32 hits). (Since as cannot know where these symbols end up, as can
only alocate space for the linker to fill in later. Since as does not know how far away these symbols are, it
allocates as much space as it can.) If you use this option, the references are only one word wide (16 hits). This
may be useful if you want the object file to be as smdl as possible, and you know that the relevant symbols
are wayslessthan 17 bits away.

For some configurations, especially those where the compiler normally does not prepend an underscore to the
names of user variables, the assembler requires a %' before any use of aregister name. Thisisintended to let
the assembler distinguish between C variables and functions named "a0' through "a7', and so on. The %' is
aways accepted, but is not required for certain configurations, notably “sun3'. The "--register-prefix-optiona’
option may be used to permit omitting the "%’ even for configurations for which it is normaly required. If this
is done, it will generally be impossible to refer to C variables and functions with the same names as register
names.

as can assemble code for severd different members of the Motorola 680x0 family. The default depends upon
how as was configured when it was built; normaly, the default is to assemble code for the 68020
microprocessor. The following options may be used to change the default. These options control which
ingtructions and addressing modes are permitted. The members of the 680x0 family are very smilar. For
detailed information about the differences, see the Motorola manuals.

-m68000° -m68008 -m68302

Assemble for the 68000. -m68008' and "-m68302' are synonyms for "-m68000', since the chips are the
same from the point of view of the assembler.

"-m68010 Assemble for the 68010.

“-m68020' Assemble for the 68020. Thisis normaly the defaullt.

“-m68030' Assamble for the 68030.

“-m68040 Assemble for the 68040.

“-m68060' Assemble for the 68060.

-mcpu3d2 -mB8331 -m68332° -m68333 -m68340° -m68360
Assemble for the CPU32 family of chips.

-m68881° "-m68882

Assemble 68881 floating point instructions. This is the default for the 68020, 68030, and the CPU32.
The 68040 and 68060 aways support floating point instructions.

*-mno-68881'

Do not assemble 68881 floating point instructions. This is the default for 68000 and the 68010. The
68040 and 68060 aways support floating point instructions, even if this option is used.

“-m68851'

Assemble 68851 MMU ingructions. This is the default for the 68020, 68030, and 68060. The 68040
accepts asomewhat different set of MMU ingtructions; -m68851' and "-m68040" should not be used together.

*-mno-68851'

Do not assemble 68851 MMU indructions. This is the default for the 68000, 68010, and the CPU32.
The 68040 accepts a somewhat different set of MMU ingtructions.

Syntax
This syntax for the Motorola 680x0 was developed at MIT.

The 680x0 version of as uses ingtructions names and syntax compatible with the Sun assembler. Intervening
periods are ignored; for example, ‘'movl' is equivaent to ‘mov.l".

In the following table apc stands for any of the address registers ((%a0' through "%a7"), the program counter
("%pc), the zero-address relative to the program counter ("%zpc'), a suppressed address register (*%zad'
through "%zar"), or it may be omitted entirely. The use of size means one of "'w' or "I, and it may be omitted,
aong with the leading colon, unless a scae is aso specified. The use of scale meansone of "1, "2, "4, or '8,
and it may aways be omitted along with the leading colon.

The following addressing modes are understood:

Immediate “#number'
Data Register "%d0' through "%d7"

Address Register "%a0' through "%ar"
"%ar" isaso known as "%, i.e. the Stack Pointer. %086 is dso known as "%fp,
the Frame Pointer.

Address Register "%a0@' through "%a7@'
Indirect

Address Register "%a0@+' through "%ar7@+'
Postincrement

Address Register "%a0@-' through "%ar@-'
Predecrement

Indirect Plus Offset “apc@(number)’
Index “apc@(number,register:size:scale)’ The number may be omitted.

Postindex “gpc@(number) @(onumber,register:size:scale)' The onumber or the register, but
not both, may be omitted.

Preindex “apc@(number, register:size:scale) @(onumber)' The number may be omitted.
Omitting the register produces the Postindex addressing mode.

Absolute “symbol', or “digits, optionally followed by ":b', ":w', or ":I".

Motorola Syntax

The standard Motorola syntax for this chip differs from the syntax aready discussed (see section Syntax). as
can accept Motorola syntax for operands, even if MIT syntax is used for other operands in the same
instruction. The two kinds of syntax are fully compatible.

In the following table apc stands for any of the address registers (‘%a0' through "%a7"), the program counter
("%pc), the zero-address relative to the program counter (‘%zpc'), or a suppressed address register (*%zad'
through "%za7"). The use of size means one of "'w' or 'I', and it may always be omitted aong with the leading
dot. The use of scde meansone of "1, "2, "4, or '8, and it may aways be omitted dong with the leading
asterisk.

The following additional addressing modes are understood:

Address Register Indirect “(%a0)' through " (%0a?)'
"%ar" isaso known as %9, i.e. the Stack Pointer. %086 is aso known as
"%fp’, the Frame Pointer.

Address Register “(%a0)+ through “(%0a?)+'

Postincrement

Address Register "-(%a0)' through "-(%0a?)'

Predecrement

Indirect Plus Offset “number(%a0)' through “number(%0a7)’, or “number(%opc)’. The number
may aso gppear within the parentheses, asin “(number,%20)'. When used
with the pc, the number may be omitted (with an address register,
omitting the number produces Address Register Indirect mode).

Index “number(apc,register.size* scale)' The number may be omitted, or it may
appear within the parentheses. The apc may be omitted. The register and
the apc may appear in either order. If both apc and register are address
registers, and the size and scale are omitted, then the first register is taken
as the base register, and the second asthe index register.

Postindex “([number,apc] register.size* scaleonumber)’ The onumber, or the
register, or both, may be omitted. Either the number or the apc may be
omitted, but not both.

Preindex “([number,apc,register.size* scale] ,onumber)' The number, or the apc, or

the register, or any two of them, may be omitted. The onumber may be
omitted. The register and the apc may appear in either order. If both apc
and register are address registers, and the size and scale are omitted, then
the first register is taken as the base register, and the second as the index
register.

Floating Point
Packed decima (P) format floating literals are not supported. Fedl free to add the code!

Thefloating point formats generated by directives are these.
. fl oat Single precision floating point constants.
. doubl e Doubl e precision floating point constants.

Thereis no directive to produce regions of memory holding extended precision numbers, however they can be
used as immediate operands to floating-point ingtructions. Adding a directive to create extended precision
numbers would not be hard, but it has not yet seemed necessary.

680x0 Machine Directives

In order to be compatible with the Sun assembler the 680x0 assembler understands the following directives.
.datal Thisdirectiveisidentica to a.data 1 directive.

.data2 Thisdirectiveisidentica to a.data 2 directive.

.even Thisdirectiveisaspeciad case of the .dign directive; it digns the output to an even byte boundary.

.skip Thisdirectiveisidentica to a.space directive.

