CSC 223 - Advanced Scientific Programming

Python Iterators

lterators

m Python iterator syntax is used to perform repetition

for i in range (10):
print (i, end=’ ?)

m The range object is an iterator, which provides the
functionality required by the for loop.

m A Python iterator has a built-in function next

>>> I = iter([2, 4, 6, 8, 10])
>>> print (next (I))

2

>>> print (next (I))

4

Useful lterators

m Python includes some useful iterators:

All the built-in data structures
range

enumerate

zip

map

filter

enumerate

m Sometimes you need to keep track of the index when iterating
over a list:
L = [2 B 4 B 6) 8 > 10]
for i in range(len(L)):
print (i, L[il)

m The enumerate iterator provides this information

for i, val in enumerate(L):
print (i, val)

zip

m The zip iterator allows you to iterate over multiple lists
simultaneously
L = [2, 4, 6, 8, 10]
R = [3, 6, 9, 12, 15]
for 1lval, rval in zip(L, R):
print (lval, rval)

m Any number of iterables can be zipped together

m The shortest length iterable determines the length of the
zipped iterable.

map

m The map iterator takes a function and applies it to the values
in an iterator:

find the first 10 square numbers

square = lambda x: x ** 2

for val in map(square, range(10)):
print (val, end=’)

filter

m The filter iterator takes a boolean returning function and

passes through the values for the filter function evaluates to
True

find values up to 10 that are even

is_even = lambda x: x % 2 == 0

for val in filter(is_even, range (10)):
print (val, end=’)

lterators as Function Arguments

m Recall that *args and **kwargs can be used to pass
sequences and dictionaries to functions.

>>>
01
>>>
01

m This

>>>
>>>
>>>
>>>
(1,
>>>
>>>
>>>

(1,

print (*xrange (10))

2345672829

print (*map(lambda x: x **2, range(10)))
4 9 16 25 36 49 64 81

means the inverse of the zip function is the zip function

L1 = (1, 2, 3, 4)

L2 = (;a;, b, c?, ’d47)

z = zip (L1, L2)

print (xz)

’a’) (2, ’b’) (3, ’c’) (4, ’4d’)
z = zip (L1, L2)

new_L1, new_L2 = zip(*z)

print (new_L1, new_L2)

2, 3, 4) (7a:’ b, c?, R

Specialized lterators: itertools

m The Python itertools module contains many more useful
iterators

m Example:

>>> from itertools import combinations
>>> ¢ = combinations(range(4), 2)

>>> print (xc)

(0, 1) (o, 2) (0o, 3) (1, 2) (1, 3) (2, 3)

