CSC 223 - Advanced Scientific Programming

Errors and Exceptions



Errors

m There are three main types of errors in Python programming:
m Syntax errors: errors where the code is not valid Python
m Runtime errors: errors where syntactically valid code fails to
execute
m Semantic errors: errors in logic — the code executes but the
result is not expected.



Runtime Errors

m Python has an exception handling framework to deal with
runtime errors.

m Runtime errors typically cause an exception to occur

m Examples of exceptions:
m NameError — results from referencing an undefined variable
m TypeError — results from undefined operations

m IndexError — results from accessing an element that does not
exist.



Catching Exceptions

m The try ... except clause is used to handle runtime
exceptions:

try:

print ("this gets executed first")
except:

print ("this gets executed on runtime error")



Catching Exceptions Explicitly

m The except clause can specify which exception it handles

def safe_divide(a, b):
try:
return a / b
except ZeroDivisionError:
return 1E100

m This will not handle other types of exceptions (which is
typically what you want)

>>> safe_divide (1, ’2’)
TypeError



Raising Exceptions

m The raise statement is used to make an exception occur

def fibonacci (N):

if N < O:

raise ValueError ("N must be non-negative")
L = []
a, b, =0, 1

while len(L) < N:
a, b =b, a + b
L.append(a)

return L



Accessing the Error Message

The error message that an exception contains can be referred
to explicitly:

try:
x=1/0
except ZeroDivisionError as err:
print ("Error class is: ", type(err)

print ("Error message is:", err)



try ... except ... else ... finally

m The else and finally keywords can be used for more
exception handling control

try:

print ("try something")
except:

print ("this happens only if it fails")
else:

print ("this happens only if it succeeds")
finally:

print ("this happens no matter what")



