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Uncertainty



Probabilistic Robotics

m Probabilistic robotics is about the

B representation
m propagation
m reduction

of uncertainty.



Environmental Representation

m The environment is characterized by state.

m There are two fundamental types of interactions between a
robot and its environment.
m Environmental sensor measurements
m Control actions



Notation

The state is represented as x; where t is time.
The measurement data at time t is denoted as z;.
The control data at time t is denoted as u;.

The notation

Ytiita, = Ytro Y+l - - Yo

denotes the set of all y values between from t; to ty.



Representing Uncertainty

m In probabilistic robotics, uncertainty is represented explicitly
using probability theory.

m The evolution of a state may be represented as a probability
distribution

P(Xt | X0:t—1, Z1:t—1, U1:t)

m That is, the state x; is conditioned on all past states,
measurements and controls.



Representing Uncertainty

m The state transition probability

p(Xt | X0:t—1, Ul:t)

specifies how the state evolves over time as a function of the
control actions.

m The measurement probability

P(Zt ’ X0:t) Z1:t—1, ul:t)

specifies the probabilistic law according to which measurement
z are generated from environment state x.



State Evolution Bayes Network
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Complete State

m A state x; is complete if it is the best predictor of the future.

m In other words, completeness means that knowledge of the
past states, measurements, or controls carry no additional
information that would help us predict the future.

m If x; is complete, the evolution of a state may be represented
as a state transition probability

P(Xt | Xt—1, Ut)

m Additionally, the measurement probability can be represented
as

p(ze | xt)



Belief Distribution

m A belief reflects the robot’s internal knowledge about the
state of the environment.

m Probabilistic robotics represents beliefs with conditional
probability distributions.

m A belief distribution is a posterior probability over state
variables conditioned on the available data

be/(xt) = P(Xt | Z1:t, Ul:t)



Bayes Filter Algorithm

function BAYES FILTER(bel(x¢—1), ut, 2t)
for ﬂxt do
be/(Xt) = fp(Xt | Ut7Xt_1)bel(Xt_1)dXt_]_

bel(x:) = np(z¢ | x¢)bel(xt)
return bel(x;)




Different Realizations

m The Bayes filter is a framework for recursive state estimation.
m There are different realizations.

m Different properties

m Linear vs. non-linear models for state transition and
measurements.

m Parametric vs. non-parametric

"o



Gaussian Filters

m A Gaussian filter represents beliefs by multivariate normal
distributions

p(x) = det(2rE)7 exp{—3(x — p1) TE I (x — 1)}

m The Gaussian distribution is unimodal, so the posterior
represents a single hypothesis.



The Gaussian Distribution

m A 1D Gaussian distribution is defined as

1 (x=1)?
p(X) = e QUZ
2mo?

m A n dimensional Gaussian distribution is defined as
p(x) =~ bl TE )
(2m)"|x]

where x is a vector and X is a covariance matrix.



Covariance Matrix

m When X is a vector, the variance is expressed as a covariance
matrix X where

oij = E[(xj — i) (xj — 1))]

m A covariance matrix has the form

2
01 p120102 ... P1p010n
2
5 P120102 05 ... pP2n020p
2
P1n010n P2n020n ... On

where pj; corresponds to the degree of correlation between the
variables X; and X;.



Properties of the Gaussian Distribution

m Given two independent random variables, X ~ N (jix,02) and
Y ~ N(py,02), then

aX + b~ N(apux + b, a%02)
and

Z=X+Y ~ N+ py, 0% +03)



Properties of the Gaussian Distribution
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Linear Approximation of a Nonlinear Function

m Given Y = f(X) with X and Y assumed to be Gaussian and
f(-) a nonlinear function

m Approximate the function with a first order Taylor series
expansion

Y = f(ux) + =< X — px
(“)Jraxx:ux( fix)



Linear Approximation of a Nonlinear Function
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Transforming Uncertainty

Propagation of uncertainty is the effect of uncertainty of a
random variable to the uncertainty of a function based on the
random variable.

Given a function

y=f(x)

that maps a random variable x, to a random variable y.
Let the standard deviation of x be given by 0.

We can calculate the variance of 0}2, as

of \ 2
2 2
oy, = <0X> Oy



Transforming Uncertainty

m If the function is a multivariable function that maps n inputs
to m outputs, then the variances become covariance matrices.

m The covariance matrix of of y can be calculated as
Y, =JrJ7

where J is an m x n Jacobian matrix.



Jacobian Matrix

m Let f(x) be a vector-valued function

ORI

m Let the gradient operator be the vector of (first order) partial
derivatives

ve=[2 2 .. 2]
m Then, the Jacobian matrix is defined as
ofi 0
Fo— [fl(X) v, — Ox1 * " Oxp
fo(x) of  on

Ox1 """ Oxp



Kalman Filter

m The Kalman filter is a realization of a Bayes filter.
m It is an estimator for the linear Gaussian case.

m It is the optimal solution for linear models and Gaussian
distributions.



Linear State Transition Model

m The Kalman filter assumes that the true state as time k is
evolved from the state at (k — 1) according to

Xk = Fixi—1 + Brug + wy

where

m F, is the state transition model.

m By is the control-input model.

B wy is process noise assumed to be drawn from a zero mean
normal distribution with covariance Q.



Linear Observation Model

m At time k an observation (or measurement) zx of the true
state xj is made according to

2z = Hixi + vi

where

m Hy is the observation model which maps the true state space
into the observed state space.

m v, is observation noise assumed to be drawn from a zero mean
normal distribution with covariance Ry.



Kalman Filter State

m The state of a Kalman filter is represented by two variables
B Xy, the posterior state estimate at time k given the
observations up to and including time k;
m Py, the posterior error covariance matrix.
m The notation X, ,, represents the estimate of x at time n given
observations up to and including time m < n.



Kalman Filter Prediction Step

Predict the state estimate
Rik—1 = FXe—1jk—1 + Bruk
Predict the estimate covariance

Pijk—1 = FkPr_1jk—1F + Q«



Kalman Filter Correction Step

Compute the innovation
Yk = zk — HiXypr—1
Compute the innovation covariance
Sk = R+ HiP—1H{
Compute the optimal Kalman gain
Ky = 'Dk|k—1HIZ—5/:1
A Update the state estimate
Rklk = Xik—1 + Kk Yk
Update the estimate covariance

Py = (I = Kk Hi) Piie—1



The Extended Kalman Filter

m The Extended Kalman Filter (EKF) is a sub-optimal extension
to the original Kalman filter algorithm.

m The EKF allows for the estimation of non-linear state
transition and observation models.

m This is accomplished by linearizing the mean and covariance
estimates.



Nonlinear State Transition Model

m The EKF assumes that the true state as time k is evolved
from the state at (k — 1) according to

X = F(Xk—1, k) + wi

where

m f(-) is the nonlinear state transition model.

m Fy is the Jacobian of f with respect to the state.

B wy is process noise assumed to be drawn from a zero mean
normal distribution with covariance Q.



Nonlinear Observation Model

m At time k an observation (or measurement) zj of the true
state x, is made according to

2 = h(xx) + vk

where

m h(-) is the nonlinear observation model which maps the true
state space into the observed state space.

m Hy is the Jacobian of h with respect to the state.

m v, is observation noise assumed to be drawn from a zero mean
normal distribution with covariance Ry.



Extended Kalman Filter Prediction Step

Predict the state estimate

Rik—1 = F(Re—1jk—1, Uk)
Predict the estimate covariance

Pijk—1 = FkPr_1jk—1F + Q«



Extended Kalman Filter Correction Step

Compute the innovation
Vi = zk — h(Rik-1)
Compute the innovation covariance
Sk = HiPujk—1Hi + R«
Compute the (near optimal) Kalman gain
Ky = 'Dk|k—1HIZ—5/:1
A Update the state estimate
Rklk = Xik—1 + Kk Yk
Update the estimate covariance

Py = (I = Kk Hi) Piie—1



