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Uncertainty



Probabilistic Robotics

Probabilistic robotics is about the

representation
propagation
reduction

of uncertainty.



Environmental Representation

The environment is characterized by state.

There are two fundamental types of interactions between a
robot and its environment.

Environmental sensor measurements
Control actions



Notation

The state is represented as xt where t is time.

The measurement data at time t is denoted as zt .

The control data at time t is denoted as ut .

The notation

yt1:t2 = yt1 , yt1+1, . . . , yt2

denotes the set of all y values between from t1 to t2.



Representing Uncertainty

In probabilistic robotics, uncertainty is represented explicitly
using probability theory.

The evolution of a state may be represented as a probability
distribution

p(xt | x0:t−1, z1:t−1, u1:t)

That is, the state xt is conditioned on all past states,
measurements and controls.



Representing Uncertainty

The state transition probability

p(xt | x0:t−1, u1:t)

specifies how the state evolves over time as a function of the
control actions.

The measurement probability

p(zt | x0:t , z1:t−1, u1:t)

specifies the probabilistic law according to which measurement
z are generated from environment state x .



State Evolution Bayes Network



Complete State

A state xt is complete if it is the best predictor of the future.

In other words, completeness means that knowledge of the
past states, measurements, or controls carry no additional
information that would help us predict the future.

If xt is complete, the evolution of a state may be represented
as a state transition probability

p(xt | xt−1, ut)

Additionally, the measurement probability can be represented
as

p(zt | xt)



Belief Distribution

A belief reflects the robot’s internal knowledge about the
state of the environment.

Probabilistic robotics represents beliefs with conditional
probability distributions.

A belief distribution is a posterior probability over state
variables conditioned on the available data

bel(xt) = p(xt | z1:t , u1:t)



Bayes Filter Algorithm

function Bayes Filter(bel(xt−1), ut , zt)
for all xt do

bel(xt) =
∫
p(xt | ut , xt−1)bel(xt−1)dxt−1

bel(xt) = ηp(zt | xt)bel(xt)
return bel(xt)



Different Realizations

The Bayes filter is a framework for recursive state estimation.

There are different realizations.

Different properties

Linear vs. non-linear models for state transition and
measurements.
Parametric vs. non-parametric
...



Gaussian Filters

A Gaussian filter represents beliefs by multivariate normal
distributions

p(x) = det(2πΣ)
1
2 exp{−1

2 (x − µ)TΣ−1(x − µ)}

The Gaussian distribution is unimodal, so the posterior
represents a single hypothesis.



The Gaussian Distribution

A 1D Gaussian distribution is defined as

p(x) =
1√

2πσ2
e

(x−µ)2

2σ2

A n dimensional Gaussian distribution is defined as

p(x) =
1√

(2π)n|Σ|
e

1
2

(x−µ)T Σ−1(x−µ)

where x is a vector and Σ is a covariance matrix.



Covariance Matrix

When X is a vector, the variance is expressed as a covariance
matrix Σ where

σij = E[(xi − µi )(xj − µj)]

A covariance matrix has the form

Σ =


σ2

1 ρ12σ1σ2 . . . ρ1nσ1σn
ρ12σ1σ2 σ2

2 . . . ρ2nσ2σn
...

...
. . .

...
ρ1nσ1σn ρ2nσ2σn . . . σ2

n


where ρij corresponds to the degree of correlation between the
variables Xi and Xj .



Properties of the Gaussian Distribution

Given two independent random variables, X ∼ N (µx , σ
2
x) and

Y ∼ N (µy , σ
2
y ), then

aX + b ∼ N (aµx + b, a2σ2
x)

and

Z = X + Y ∼ N (µx + µy , σ
2
x + σ2

y )



Properties of the Gaussian Distribution



Linear Approximation of a Nonlinear Function

Given Y = f (X ) with X and Y assumed to be Gaussian and
f (·) a nonlinear function

Approximate the function with a first order Taylor series
expansion

Y ≈ f (µx) +
∂f

∂X

∣∣∣
x=µx

(X − µx)



Linear Approximation of a Nonlinear Function



Transforming Uncertainty

Propagation of uncertainty is the effect of uncertainty of a
random variable to the uncertainty of a function based on the
random variable.

Given a function

y = f (x)

that maps a random variable x , to a random variable y .

Let the standard deviation of x be given by σx .

We can calculate the variance of σ2
y as

σ2
y =

(
∂f

∂x

)2

σ2
x



Transforming Uncertainty

If the function is a multivariable function that maps n inputs
to m outputs, then the variances become covariance matrices.

The covariance matrix of of y can be calculated as

Σy = JΣxJ
T

where J is an m × n Jacobian matrix.



Jacobian Matrix

Let f (x) be a vector-valued function

f (x) =

[
f1(x)
f2(x)

]

Let the gradient operator be the vector of (first order) partial
derivatives

∇x =
[
∂
∂x1

∂
∂x2

. . . ∂
∂xn

]T
Then, the Jacobian matrix is defined as

Fx =

[
f1(x)
f2(x)

]
· ∇x =

 ∂f1
∂x1

. . . ∂f1∂xn

∂f2
∂x1

. . . ∂f2∂xn





Kalman Filter

The Kalman filter is a realization of a Bayes filter.

It is an estimator for the linear Gaussian case.

It is the optimal solution for linear models and Gaussian
distributions.



Linear State Transition Model

The Kalman filter assumes that the true state as time k is
evolved from the state at (k − 1) according to

xk = Fkxk−1 + Bkuk + wk

where

Fk is the state transition model.
Bk is the control-input model.
wk is process noise assumed to be drawn from a zero mean
normal distribution with covariance Qk .



Linear Observation Model

At time k an observation (or measurement) zk of the true
state xk is made according to

zk = Hkxk + vk

where

Hk is the observation model which maps the true state space
into the observed state space.
vk is observation noise assumed to be drawn from a zero mean
normal distribution with covariance Rk .



Kalman Filter State

The state of a Kalman filter is represented by two variables

x̂k|k , the posterior state estimate at time k given the
observations up to and including time k ;
Pk|k , the posterior error covariance matrix.

The notation x̂n|m represents the estimate of x at time n given
observations up to and including time m ≤ n.



Kalman Filter Prediction Step

1 Predict the state estimate

x̂k|k−1 = Fk x̂k−1|k−1 + Bkuk

2 Predict the estimate covariance

Pk|k−1 = FkPk−1|k−1F
T
k + Qk



Kalman Filter Correction Step

1 Compute the innovation

ỹk = zk − Hk x̂k|k−1

2 Compute the innovation covariance

Sk = Rk + HkPk|k−1H
T
k

3 Compute the optimal Kalman gain

Kk = Pk|k−1H
T
k S−1

k

4 Update the state estimate

x̂k|k = x̂k|k−1 + Kk ỹk

5 Update the estimate covariance

Pk|k = (I − KkHk)Pk|k−1



The Extended Kalman Filter

The Extended Kalman Filter (EKF) is a sub-optimal extension
to the original Kalman filter algorithm.

The EKF allows for the estimation of non-linear state
transition and observation models.

This is accomplished by linearizing the mean and covariance
estimates.



Nonlinear State Transition Model

The EKF assumes that the true state as time k is evolved
from the state at (k − 1) according to

xk = f (xk−1, uk) + wk

where

f (·) is the nonlinear state transition model.
Fk is the Jacobian of f with respect to the state.
wk is process noise assumed to be drawn from a zero mean
normal distribution with covariance Qk .



Nonlinear Observation Model

At time k an observation (or measurement) zk of the true
state xk is made according to

zk = h(xk) + vk

where

h(·) is the nonlinear observation model which maps the true
state space into the observed state space.
Hk is the Jacobian of h with respect to the state.
vk is observation noise assumed to be drawn from a zero mean
normal distribution with covariance Rk .



Extended Kalman Filter Prediction Step

1 Predict the state estimate

x̂k|k−1 = f (x̂k−1|k−1, uk)

2 Predict the estimate covariance

Pk|k−1 = FkPk−1|k−1F
T
k + Qk



Extended Kalman Filter Correction Step

1 Compute the innovation

ỹk = zk − h(x̂k|k−1)

2 Compute the innovation covariance

Sk = HkPk|k−1H
T
k + Rk

3 Compute the (near optimal) Kalman gain

Kk = Pk|k−1H
T
k S−1

k

4 Update the state estimate

x̂k|k = x̂k|k−1 + Kk ỹk

5 Update the estimate covariance

Pk|k = (I − KkHk)Pk|k−1


