CSC 445 - Intro to Intelligent Robotics, Spring 2018

Transformation Matrices

Matrices as Functions

- An $m \times n$ matrix A defines a function from \mathbb{R}^{n} to \mathbb{R}^{m} where \mathbb{R}^{k} denotes a $k \times 1$ matrix (column vector).
- The equation $y=A x$ where $y \in \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n}$ is analagous to $y=f(x)$ for single variable functions.
■ Functions defined by matrices are linear:
- $A(x+y)=A x+A y$
- $A(c x)=c A x$, where $c \in \mathbb{R}$

2D Matrix Transforms: Reflection

- Reflection in the x axis and y axis:

$$
\operatorname{Re} f_{x}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \operatorname{Ref} f_{y}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

- Reflection in the origin and the line $y=x$:

$$
\operatorname{Ref}_{o}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \quad \operatorname{Re} f_{l}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

2D Matrix Transforms: Scaling

- Scaling:

$$
\operatorname{Scale}\left(s_{x}, s_{y}\right)=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

2D Matrix Transforms: Rotation

- Counter clockwise rotation (the rotation matrix):

$$
R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- Clockwise rotation:

$$
R^{-1}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

2D Matrix Transforms: Shearing

- Shear parallel to x :

$$
\operatorname{Shear}_{x}(k)=\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]
$$

- Shear parallel to y :

$$
\operatorname{Shear}_{y}(k)=\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]
$$

2D Matrix Transforms: Translation

- A translation is an affine transformation:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

- Inverse translation:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{-1}\left(\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]-\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]\right)=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Coordinate Frame Notation

- ${ }^{A} p$ - a point in coordinate frame $\{A\}$
- ${ }_{B}^{A} R$ - rotation of $\{B\}$ relative to $\{A\}$, (Note: ${ }_{B}^{A} R^{T}={ }_{A}^{B} R$)
- $\{B\}=\left\{{ }_{B}^{A} R,{ }^{A} p\right\}$ - definition of coordinate frame $\{B\}$ relative to $\{A\}$
- Transform a point in frame $\{B\}$ to frame $\{A\}$:

$$
{ }^{A} q={ }_{B}^{A} R^{B} q+{ }^{A} p
$$

- Transform a point in frame $\{A\}$ to frame $\{B\}$ (inverse):

$$
{ }_{A}^{B} R\left({ }^{A} q-{ }^{A} p\right)={ }^{B} q
$$

Chaining Coordinate Frame Transforms

- Consider a point in coordinate frame $\{C\}$ that we want to transform to a reference frame $\{A\}$ by means of coordinate frame $\{B\}$
- The calculation is as follows:

$$
{ }^{A} q={ }_{B}^{A} R\left({ }_{C}^{B} R^{C} q+{ }^{B} p\right)+{ }^{A} p
$$

- It would be notationally nicer if would could do this with matrix multiplication (i.e. function composition):

$$
{ }^{A} q={ }_{B}^{A} T_{C}^{B} T^{C} q
$$

for some matrices ${ }_{B}^{A} T$ and ${ }_{C}^{B} T$

Homogeneous Coordinates

■ Homogeneous coordinates are a system of coordnates used in projective geometry.
■ For our purposes, we can convert a 2D Cartesian coordinate to a homogeneous coordinate by augmenting the column vector with the value 1 :

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- We can apply homogeneous transforms with the augmented vector.

Homogeneous Transforms: Euclidean Transform

- The Euclidean transform is a subset of homogeneous transforms that can be used to apply a rotation and a translation:

$$
{ }_{B}^{A} T=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- The inverse of the transform is the inverse of the matrix:

$$
{ }_{B}^{A} T^{-1}={ }_{A}^{B} T
$$

