CSC 445 - Intro to Intelligent Robotics, Spring 2018

Linear Algebra

Matrix

■ Definition: A matrix is a rectangular array of numbers

- A matrix with m rows and n columns is called an $m \times n$ matrix
- The plural of matrix is matrices
- A matrix with the same number of rows and columns is called square
- Two matrices are equal if they have the same number of rows and columns and the corresponding entries in every position are equal

Notation

■ Let m and n be positive integers and let

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

- The i th row of A is the $1 \times n$ matrix $\left[a_{i 1}, a_{i 2}, \ldots, a_{i n}\right]$
- The j th column of A is the $m \times 1$ matrix:

$$
\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right]
$$

- The (i, j) th element or entry of A is the element $a_{i j}$
- We can use the notation $A=\left[a_{i j}\right]$ to denote the matrix with its (i, j) th element equal to $a_{i j}$

Matrix Addition

- Definition: Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be $m \times n$ matrices; the sum of A and B, denoted by $A+B$, is the $m \times n$ matrix that has $a_{i j}+b_{i j}$ as its (i, j) th element, that is $A+B=\left[a_{i j}+b_{i j}\right]$
- Note that matrix addition is only defined for matrices of the same size
- Example:

$$
\left[\begin{array}{rrr}
1 & 0 & -1 \\
2 & 2 & -3 \\
3 & 4 & 0
\end{array}\right]+\left[\begin{array}{rrr}
3 & 4 & -1 \\
1 & -3 & 0 \\
-1 & 1 & 2
\end{array}\right]=\left[\begin{array}{rrr}
4 & 4 & -2 \\
3 & -1 & -3 \\
2 & 5 & 2
\end{array}\right]
$$

Scalar Multiplication

- Definition: Let k be a scalar and A be a matrix; the product of a k and A, denoted by $k A$ is a matrix where every element in A is multiplied with k
■ Example:

$$
2\left[\begin{array}{lll}
1 & 0 & 4 \\
2 & 1 & 1 \\
3 & 1 & 0 \\
0 & 2 & 2
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 8 \\
4 & 2 & 2 \\
6 & 2 & 0 \\
0 & 4 & 4
\end{array}\right]
$$

Matrix Multiplication

- Definition: Let A be an $m \times k$ matrix and B be a $k \times n$ matrix; the product of A and B, denoted by $A B$, is the $m \times n$ matrix that has its (i, j) th element equal to the sum of the products of the corresponding elements from the i th row of A and the j th column of B, that is, $A B=\left[c_{i j}\right]$ where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j}$
■ Note that matrix multiplication is not defined when the number of columns in the first matrix is not the same as the number of rows in the second
- Example:

$$
\left[\begin{array}{lll}
1 & 0 & 4 \\
2 & 1 & 1 \\
3 & 1 & 0 \\
0 & 2 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
1 & 1 \\
3 & 0
\end{array}\right]=\left[\begin{array}{rr}
14 & 4 \\
8 & 9 \\
7 & 13 \\
8 & 2
\end{array}\right]
$$

Matrix Multiplication is not Commutative

- Example: Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] \quad B=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

- Then

$$
A B=\left[\begin{array}{ll}
2 & 2 \\
5 & 3
\end{array}\right] \quad B A=\left[\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right]
$$

so $A B \neq B A$

The Identity Matrix

■ Definition: The identity matrix of order n is the $n \times n$ matrix $I_{n}=\left[\delta_{i j}\right]$ where

$$
\begin{gathered}
\delta_{i j}= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
\end{gathered}
$$

- $A I_{n}=I_{m} A=A$ when A is an $m \times n$ matrix

Powers of Matrices

- Powers of matrices can be defined for square matrices
- When A is an $n \times n$ matrix:

$$
\begin{aligned}
& A^{0}=I_{n} \\
& A^{r}=\underbrace{A A A \cdots A}_{r \text { times }}
\end{aligned}
$$

Transposes of Matrices

■ Definition: Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix; the transpose of A, denoted by A^{T}, is the $n \times m$ matrix obtained by interchanging the row and columns of A
■ If $A^{T}=\left[b_{i j}\right]$, then $b_{i j}=a_{j i}$ for $i=1,2, \ldots, n$
■ Example:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \quad A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

Symmetric Matrices

- Definition: A square matrix A is called symmetric if $A=A^{T}$
- $A=\left[a_{i j}\right]$ is symmetric if $a_{i j}=a_{j i}$ for i and j with $1 \leq i \leq n$ and $1 \leq j \leq n$
■ Example:

$$
A=A^{T}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Inverse of a Matrix

- Definition: If A and B are $n \times n$ matrices with $A B=B A=l$, the B is called the inverse of A and A is said to be invertible. The notation $B=A^{-1}$ denotes that B is the inverse of A.

Vectors

- A position vector represents a point in n dimensional space.
- We will use the convention that a vector is an $n \times 1$ matrix (a column vector).
■ Example: a point in 3D space

$$
p=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

The Length of a Vector

- The length of a vector a, denoted as $\|a\|$, is defined as:

$$
\|a\|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}
$$

or using matrix multiplication:

$$
\|a\|=\sqrt{a^{T} \cdot a}
$$

Vector Dot Product

- The dot product of two vectors a and b is defined as:
- $a \cdot b=b \cdot a=\sum_{i} a_{i} b_{i}$
- $a \cdot b=a^{T} b$
- $a \cdot b=\|a\|\|b\| \cos \theta$

■ If $a \cdot b=0$, then a and b are orthogonal

