CSC 445 - Intro to Intelligent Robotics, Spring 2018

Kinematics

Kinematics

- The *kinematics* of a robot are the way in which the individual parts of a robot can move with respect to each other and the environment.
- Kinematics is concerned with position and velocity (the first derivative of position)
- Dynamics is concerned with higher order derivatives, such as acceleration and jerk.

Forward and Inverse Kinematics

- To plan a robot's movements, we need to understand the relationship between the actuators that we can control and the robot's resulting position.
- Forward kinematics has the controlled actuators as input and the position as output.
- Forward kinematics for mobile robots involves integrating speeds over time and is referred to as odometry.
- Inverse kinematics has the desired position as input and the controls to the actuators as output (may be unsolvable).

- Example: a robot arm with two links and two joints mounted on a table (2-DOF).
- Let the length of the first link be I_1 .
- Let the length of the second link be I_2 .
- Let the position between the table and l₁ be α.
- Let the position between l_1 and l_2 be β .

The position of the joint between the first and second link:

$$x_1 = \cos \alpha l_1$$
$$y_1 = \sin \alpha l_1$$

The position of the end effector:

$$x_2 = \cos(\alpha + \beta)l_2 + x_1$$
$$y_2 = \sin(\alpha + \beta)l_2 + y_1$$

• The position of the end effector (x, y):

$$x_2 = \cos(\alpha + \beta)l_2 + \cos\alpha l_1$$

$$y_2 = \sin(\alpha + \beta)l_2 + \sin\alpha l_1$$

 The configuration space is the set of angles each actuator can be set to

$$0 < \alpha < \pi$$
$$-\pi < \beta < \pi$$

The workspace of the robot is the physical space it can move to.

A homogeneous transform:

$$\begin{bmatrix} \cos_{\alpha\beta} & -\sin_{\alpha\beta} & \cos_{\alpha\beta} l_2 + \cos\alpha l_1 \\ \sin_{\alpha\beta} & \cos_{\alpha\beta} & \sin_{\alpha\beta} l_2 + \sin\alpha l_1 \\ 0 & 0 & 1 \end{bmatrix}$$

where $\sin_{\alpha\beta}$ and $\cos_{\alpha\beta}$ are short-hand for $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$ respectively.

 Translate from the robot's base to its end-effector as a function of actuator positions α and β.

Inverse Kinematics of a Simple Arm

- The goal of inverse kinematics is to compute the actuator controls (α and β) to achieve a desired position of the end effector.
- The solution can be simplified by specifying the orientation along with the position

$$\begin{bmatrix} \cos\phi & -\sin\phi & x \\ \sin\phi & \cos\phi & y \\ 0 & 0 & 1 \end{bmatrix}$$

 A solution can be found by equating the individual entries of the transform.

Inverse Kinematics of a Simple Arm

From

$$\underbrace{\begin{bmatrix} \cos_{\alpha\beta} & -\sin_{\alpha\beta} & \cos_{\alpha\beta} l_2 + \cos \alpha l_1 \\ \sin_{\alpha\beta} & \cos_{\alpha\beta} & \sin_{\alpha\beta} l_2 + \sin \alpha l_1 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{forward kinematics}}, \qquad \underbrace{\begin{bmatrix} \cos \phi & -\sin \phi & x \\ \sin \phi & \cos \phi & y \\ 0 & 0 & 1 \end{bmatrix}}_{\text{desired position}}$$

we can see

$$\cos \phi = \cos(\alpha + \beta)$$
$$x = \cos_{\alpha\beta} l_2 + \cos \alpha l_1$$
$$y = \sin_{\alpha\beta} l_2 + \sin \alpha l_1$$

Forward Kinematics of a Mobile Robot

Forward Kinematics of a Mobile Robot

In the inertial frame, the quantity we are interested in is position

$${}^{I}\xi = \begin{bmatrix} {}^{I}_{X} \\ {}^{I}_{y} \\ {}^{I}_{\theta} \end{bmatrix}$$

In the robot's frame, the quantity we are interested in is velocity

$${}^{R}\dot{\xi} = \begin{bmatrix} {}^{R}\dot{x} \\ {}^{R}\dot{y} \\ {}^{R}\dot{\theta} \end{bmatrix}$$

To calculate the robot's position in the inertial frame, we need to map velocities in the robot's frame to velocities in the inertial frame.

Forward Kinematics of a Mobile Robot

We can derive this with trigonometry:

$$i\dot{x} = \cos\theta^{R}\dot{x} - \sin\theta^{R}\dot{y}$$
$$i\dot{y} = \sin\theta^{R}\dot{x} + \cos\theta^{R}\dot{y}$$
$$i\dot{\theta} = {}^{R}\dot{\theta}$$

And conveniently write:

$$\dot{\xi} = {}^{I}_{R}T(\theta)^{R}\dot{\xi}$$

where

$${}^{I}_{R}T(\theta) = egin{bmatrix} \cos \theta & -\sin \theta & 0 \ \sin \theta & \cos \theta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Forward Kinematics of Differential Drive

The forward speed of a wheel x using its rotational speed φ and radius r is:

$$\dot{x} = \dot{\phi}r$$

The forward speed of the robot can be calculated as

$${}^{R}\dot{x} = \frac{r\dot{\phi}_{I}}{2} + \frac{r\dot{\phi}_{r}}{2}$$

where $\dot{\phi}_l$ and $\dot{\phi}_r$ are the velocities of the left and right wheels respectively.

Forward Kinematics of Differential Drive

 Assuming that the robot's left wheel is not moving, the rotational velocity of the robot is

$$\dot{\omega_r} = \frac{r\phi_r}{d}$$

where d is the distance between the robot's wheels.

Considering the velocities of both wheels leads to

$${}^{\mathsf{R}}\dot{\theta} = \frac{r\phi_{\mathsf{r}}}{d} - \frac{r\phi_{\mathsf{l}}}{d}$$

where ϕ_l and ϕ_r are the velocities of the left and right wheels

Forward Kinematics of Differential Drive

Putting it all together, we get

$$\underbrace{\begin{bmatrix} l \\ \dot{x} \\ l \\ \dot{y} \\ l \\ \dot{\theta} \end{bmatrix}}_{l_{\dot{\xi}}} = \underbrace{\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{l_{\kappa}^{\prime} T(\theta)} \underbrace{\begin{bmatrix} \frac{r \dot{\phi}_{l}}{2} + \frac{r \dot{\phi}_{r}}{2} \\ 0 \\ \frac{r \dot{\phi}_{r}}{d} - \frac{r \dot{\phi}_{l}}{d} \end{bmatrix}}_{R_{\dot{\xi}}}$$

Odometry

 Odometry is calculating the robot's pose in the inertial frame based on the robot's velocity; this requires integration from 0 to the current time T

$$\begin{bmatrix} {}^{I}_{X} \\ {}^{I}_{y} \\ {}^{I}_{\theta} \end{bmatrix} = \int_{0}^{T} \begin{bmatrix} {}^{I}\dot{x}(t) \\ {}^{I}\dot{y}(t) \\ {}^{I}\dot{\theta}(t) \end{bmatrix} dt \approx \sum_{k=0}^{k=T} \begin{bmatrix} {}^{I}\Delta x(k) \\ {}^{I}\Delta y(k) \\ {}^{I}\Delta \theta(k) \end{bmatrix} \Delta t$$

This can be calculated incrementally as

$${}^{I}\xi(k+1) = {}^{I}\xi(k) + \Delta\xi(k)$$

using $\Delta \xi(k) \approx {}^{\prime} \dot{\xi}(t)$.

Inverse Kinematics of a Mobile Robot

We can transform a desired velocity in the inertial frame to a desired velocity in the robot's frame:

$${}^{I}\dot{\xi} = {}^{I}_{R}T(\theta) {}^{R}\dot{\xi}$$
$${}^{R}\dot{\xi} = {}^{R}_{I}T(\theta) {}^{I}\dot{\xi}$$

The wheel velocities can be computed for a desired velocity in the robot's frame:

$$\dot{\phi}_{I} = \frac{2^{R}\dot{x} - {}^{R}\dot{\theta}d}{2r}$$
$$\dot{\phi}_{r} = \frac{2^{R}\dot{x} + {}^{R}\dot{\theta}d}{2r}$$