CSC 445 - Intro to Intelligent Robotics, Spring 2018

Kinematics

Kinematics

- The kinematics of a robot are the way in which the individual parts of a robot can move with respect to each other and the environment.
- Kinematics is concerned with position and velocity (the first derivative of position)
- Dynamics is concerned with higher order derivatives, such as acceleration and jerk.

Forward and Inverse Kinematics

- To plan a robot's movements, we need to understand the relationship between the actuators that we can control and the robot's resulting position.
- Forward kinematics has the controlled actuators as input and the position as output.
- Forward kinematics for mobile robots involves integrating speeds over time and is referred to as odometry.
- Inverse kinematics has the desired position as input and the controls to the actuators as output (may be unsolvable).

Forward Kinematics of a Simple Arm

■ Example: a robot arm with two links and two joints mounted on a table (2-DOF).

- Let the length of the first link be I_{1}.
- Let the length of the second link be I_{2}.
- Let the position between the table and I_{1} be α.
- Let the position between I_{1} and I_{2} be β.

Forward Kinematics of a Simple Arm

- The position of the joint between the first and second link:

$$
\begin{aligned}
& x_{1}=\cos \alpha I_{1} \\
& y_{1}=\sin \alpha I_{1}
\end{aligned}
$$

- The position of the end effector:

$$
\begin{aligned}
& x_{2}=\cos (\alpha+\beta) l_{2}+x_{1} \\
& y_{2}=\sin (\alpha+\beta) l_{2}+y_{1}
\end{aligned}
$$

Forward Kinematics of a Simple Arm

- The position of the end effector (x, y) :

$$
\begin{aligned}
& x_{2}=\cos (\alpha+\beta) I_{2}+\cos \alpha I_{1} \\
& y_{2}=\sin (\alpha+\beta) I_{2}+\sin \alpha I_{1}
\end{aligned}
$$

- The configuration space is the set of angles each actuator can be set to

$$
\begin{aligned}
0 & <\alpha<\pi \\
-\pi & <\beta<\pi
\end{aligned}
$$

- The workspace of the robot is the physical space it can move to.

Forward Kinematics of a Simple Arm

- A homogeneous transform:

$$
\left[\begin{array}{ccc}
\cos _{\alpha \beta} & -\sin _{\alpha \beta} & \cos _{\alpha \beta} l_{2}+\cos \alpha l_{1} \\
\sin _{\alpha \beta} & \cos _{\alpha \beta} & \sin _{\alpha \beta} l_{2}+\sin \alpha l_{1} \\
0 & 0 & 1
\end{array}\right]
$$

where $\sin _{\alpha \beta}$ and $\cos _{\alpha \beta}$ are short-hand for $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$ respectively.

- Translate from the robot's base to its
 end-effector as a function of actuator positions α and β.

Inverse Kinematics of a Simple Arm

- The goal of inverse kinematics is to compute the actuator controls (α and β) to achieve a desired position of the end effector.
- The solution can be simplified by specifying the orientation along with the position

$$
\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & x \\
\sin \phi & \cos \phi & y \\
0 & 0 & 1
\end{array}\right]
$$

- A solution can be found by equating the individual entries of the transform.

Inverse Kinematics of a Simple Arm

- From

we can see

$$
\begin{aligned}
\cos \phi & =\cos (\alpha+\beta) \\
x & =\cos _{\alpha \beta} I_{2}+\cos \alpha I_{1} \\
y & =\sin _{\alpha \beta} I_{2}+\sin \alpha I_{1}
\end{aligned}
$$

Forward Kinematics of a Mobile Robot

Forward Kinematics of a Mobile Robot

- In the inertial frame, the quantity we are interested in is position

$$
{ }^{\prime} \xi=\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{\theta}
\end{array}\right]
$$

- In the robot's frame, the quantity we are interested in is velocity

$$
{ }^{R} \dot{\xi}=\left[\begin{array}{c}
R \dot{x} \\
R \dot{y} \\
R \dot{\theta}
\end{array}\right]
$$

- To calculate the robot's position in the inertial frame, we need to map velocities in the robot's frame to velocities in the inertial frame.

Forward Kinematics of a Mobile Robot

■ We can derive this with trigonometry:

$$
\begin{aligned}
I \dot{x} & =\cos \theta^{R} \dot{x}-\sin \theta^{R} \dot{y} \\
{ }^{\prime} \dot{y} & =\sin \theta^{R} \dot{x}+\cos \theta^{R} \dot{y} \\
{ }^{\prime} \dot{\theta} & ={ }^{R} \dot{\theta}
\end{aligned}
$$

- And conveniently write:

$$
{ }^{\prime} \dot{\xi}={ }_{R}^{I} T(\theta)^{R} \dot{\xi}
$$

where

$$
{ }_{R}^{\prime} T(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Forward Kinematics of Differential Drive

- The forward speed of a wheel \dot{x} using its rotational speed $\dot{\phi}$ and radius r is:

$$
\dot{x}=\dot{\phi} r
$$

- The forward speed of the robot can be calculated as

$$
R_{\dot{x}}=\frac{r \dot{\phi}_{l}}{2}+\frac{r \dot{\phi}_{r}}{2}
$$

where $\dot{\phi}_{l}$ and $\dot{\phi}_{r}$ are the velocities of the left and right wheels respectively.

Forward Kinematics of Differential Drive

- Assuming that the robot's left wheel is not moving, the rotational velocity of the robot is

$$
\dot{\omega}_{r}=\frac{r \dot{\phi}_{r}}{d}
$$

where d is the distance between the robot's wheels.

- Considering the velocities of both wheels leads to

$$
{ }^{R} \dot{\theta}=\frac{r \dot{\phi}_{r}}{d}-\frac{r \dot{\phi}_{1}}{d}
$$

where $\dot{\phi}_{l}$ and $\dot{\phi}_{r}$ are the velocities of the left and right wheels

Forward Kinematics of Differential Drive

■ Putting it all together, we get

$$
\underbrace{\left[\begin{array}{c}
\prime \\
\dot{x} \\
I^{\prime} \\
I^{\prime} \\
\dot{\theta}
\end{array}\right]}_{{ }_{\prime}}=\underbrace{\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]}_{R^{\prime} T(\theta)} \underbrace{\left[\begin{array}{c}
\frac{r \dot{\phi}_{1}}{2}+\frac{r \dot{\phi}_{r}}{2} \\
0 \\
\frac{r \dot{\phi}_{r}}{d}-\frac{r \dot{\phi}_{l}}{d}
\end{array}\right]}_{R_{\dot{\xi}}}
$$

Odometry

- Odometry is calculating the robot's pose in the inertial frame based on the robot's velocity; this requires integration from 0 to the current time T

$$
\left[\begin{array}{l}
{ }^{\prime} x \\
I_{y} \\
I_{\theta}
\end{array}\right]=\int_{0}^{T}\left[\begin{array}{l}
{ }^{\prime} \dot{x}(t) \\
I^{\prime}(t) \\
I^{\prime}(t)
\end{array}\right] d t \approx \sum_{k=0}^{k=T}\left[\begin{array}{l}
{ }^{\prime} \Delta x(k) \\
{ }^{\prime} \Delta y(k) \\
{ }^{\prime} \Delta \theta(k)
\end{array}\right] \Delta t
$$

- This can be calculated incrementally as

$$
{ }^{\prime} \xi(k+1)={ }^{\prime} \xi(k)+\Delta \xi(k)
$$

using $\Delta \xi(k) \approx^{\prime} \dot{\xi}(t)$.

Inverse Kinematics of a Mobile Robot

- We can transform a desired velocity in the inertial frame to a desired velocity in the robot's frame:

$$
\begin{aligned}
{ }^{I} \dot{\xi} & ={ }_{R}^{I} T(\theta){ }^{R} \dot{\xi} \\
{ }^{R} \dot{\xi} & ={ }_{I}^{R} T(\theta)^{I} \dot{\xi}
\end{aligned}
$$

- The wheel velocities can be computed for a desired velocity in the robot's frame:

$$
\begin{aligned}
& \dot{\phi}_{l}=\frac{2^{R} \dot{x}-{ }^{R} \dot{\theta} d}{2 r} \\
& \dot{\phi}_{r}=\frac{2^{R} \dot{x}+{ }^{R} \dot{\theta} d}{2 r}
\end{aligned}
$$

