
CSC 445 - Intro to Intelligent Robotics, Spring
2018

Graphs

Graphs

Definition: A graph G = (V ,E) consists of a nonempty set
V of vertices (or nodes) and a set E of edges. Each edge has
either one or two vertices associated with it, called its
endpoints. An edge is said to connect its endpoints.

Some Terminology

In a simple graph each edge connects two different vertices
and no two edges connect the same pair of vertices.

A multigraph may have multiple edges connecting the same
two vertices. When m different edges connect the vertices u
and v , we say that {u, v} is an edge with multiplicity m.

An edge that connects a vertex to itself is called a loop.

A pseudograph may include loops, as well as multiple edges
connecting the same pair of vertices.

Directed Graphs

Definition: An directed graph (or digraph) G = (V ,E)
consists of a nonempty set of V vertices (or nodes) and a set
of directed edges (or arcs). Each edge is associated with an
ordered pair of vertices. The directed edge associated with the
ordered pair (u, v) is said to start at u and end at v.

Some Terminology (continued)

A simple directed graph has no loops and no multiple edges

A directed multigraph may have multiple directed edges.
When there are m directed edges from the vertex u to the
vertex v , we say that (u, v) is an edge of multiplicity m.

Summary of Graph Terminology

Type Edges Multiple Edges Loops

Simple graph Undirected No No
Multigraph Undirected Yes No
Pseudograph Undirected Yes Yes
Simple directed graph Directed No No
Directed multigraph Directed Yes Yes
Mixed graph Both Yes Yes

Representing Graphs: Adjacency Lists

Definition: An adjacency list can be used to represent a
graph with no multiple edges by specifying the vertices that
are adjacent to each vertex in the graph

Representing Graphs: Adjacency Matrices

Definition: Suppose that G = (V ,E) is a simple graph where
|V | = n. Arbitrarily list the vertices of G as v1, v2, . . . , vn.
The adjacency matrix AG of G , with respect to the listing of
vertices, is the n × n zero-one matrix with 1 as its (i , j)th
entry when vi and vj are adjacent, and 0 as its (i , j)th entry
when they are not adjacent.

Adjacency Matrices (continued)

Adjacency matrices can also be used to represent graphs with
loops and multiple edges.

A loop at the vertex vi is represented by a 1 at the (i , j)th
position of the matrix.

When multiple edges connect the same pair of vertices vi and
vj , the (i , j)th entry equals the number of edges connecting
the pair of vertices.

Adjacency Matrices (continued)

Adjacency matrices can also be used to represent directed
graphs. The matrix for a directed graph G = (V ,E) has a 1
in its (i , j)th position if there is an edge from vi to vj where
v1, v2, . . . , vn is a list of vertices.

The adjacency matrix for a directed graph does not have to
be symmetric because there may not be an edge from vi to vj
when there is an edge from vj to vi .

To represent directed multigraphs, the value of aij is the
number of edges connecting vi to vj .

Paths

Informal Definition: A path is a sequence of edges that
begins at a vertex of a graph and travels from vertex to vertex
along edges of the graph. As the path travels along its edges,
it visits the vertices along this path, that is, the endpoints of
these.

Paths

Definition: Let n be a nonnegative integer and G an
undirected graph. A path of length n from u to v in G is a
sequence of n edges e1, . . . , en of G for which there exists a
sequence x0 = u, x1, . . . , xn−1, xn = v of vertices such that ei
has, for i = 1, . . . , n, the endpoints xi−1 and xi .

When the graph is simple, we denote this path by its vertex
sequence x0, x1, . . . , xn (since listing the vertices uniquely
determines the path).
The path is a circuit if it begins and ends at the same vertex
(u = v) and has length greater than zero.
The path or circuit is said to pass through the vertices
x1, x2, . . . , xn−1 and traverses the edges e1, . . . , en.
A path or circuit is simple if it does not contain the same edge
more than once.

Connectedness in Undirected Graphs

Definition: An undirected graph is called connected if there
is a path between every pair of vertices. An undirected graph
is that is not connected is called disconnected. We say that
we disconnect a graph when we remove vertices or edges, or
both, to produce a disconnected subgraph.

Definition: A connected component of a graph G is a
connected subgraph of G that is not a proper subgraph of
another connected subgraph of G .

Connectedness in Directed Graphs

Definition: An directed graph is called strongly connected if
there is a path from a to b and a path from b to a whenever a
and b are vertices in the graph.

Definition: A directed graph is weakly connected if there is a
path between every two vertices in the underlying undirected
graph, which is the undirected graph obtained by ignoring the
directions of the edges of the directed graph.

Trees

Definition: A tree is a connected undirected graph with no
simple circuits.

Definition: A forest is a graph that has no simple circuit but
is not connected. Each of the connected components in a
forest is a tree.

Rooted Trees

A rooted tree is a tree in which one vertex has been
designated as the root and every edge is directed away from
the root.

An unrooted tree is converted into different rooted trees when
different vertices are chosen as the root.

Rooted Tree Terminology

If v is a vertex of a rooted tree other than the root, the
parent of v is the unique vertex u such that there is a directed
edge from u to v . When u is a parent of v , v is called the
child of u. Vertices with the same parent are called siblings.

The ancestors of a vertex are the vertices in the path from the
root to this vertex, excluding the vertex itself and including
the root.

The descendants of a vertex v are those vertices that have v
as an ancestor.

A vertex of a rooted tree with no children is called a leaf.
Vertices that have children are called internal vertices.

If a is a vertex in a tree, the subtree with a as its root is a
tree consisting of a and its descendants and all edges incident
to these descendants.

Spanning Trees

Definition: Let G be a simple graph. A spanning tree of G is
a subgraph of G that is a tree containing every vertex of G .

Searching a Graph

function explore(G , v ∈ V)
visited(v) = true
previsit(v)
for each edge (v , u) ∈ E do

if not visited(u) then
explore(u)

postvisit(v)

where

visited is a predicate

previsit is an optional procedure

postvisit is an optional procedure

Depth First Search

function DFS(G)
for all v ∈ V do

visited(v) = false

for all v ∈ V do
if not visited(v) then

explore(v)

Breadth-First Search

function BFS(G , s ∈ V)
for all u ∈ V do

dist(u) = ∞
dist(s) = 0
Q = [s] (queue containing only s)
while Q is not empty do

u = eject(Q)
for all edges (u, v) ∈ E do

if dist(v) = ∞ then
inject(Q, v)
dist(v) = dist(u) + 1

Shortest Paths in Graphs

Definition: A weighted graph is a graph in which the edges
have been assigned weights where the weights are numerical
values.

The shortest path problem is the problem of finding a path
between two vertices in a weighted graph such that the sum
of the weights of its constituent edges is minimized.

Dijkstra’s algorithm solves the problem of finding the shortest
path from a source vertex v ∈ V to all other vertices in the
graph assuming that the weights are nonnegative.

Dijkstra’s Algorithm

function Dijkstra(G ,w, s ∈ V)
for all u ∈ V do

dist(u) = ∞
prev(u) = nil

dist(s) = 0
H = makequeue(V) (priority queue using dist values)
while H is not empty do

u = deletemin(H)
for all edges (u, v) ∈ E do

if dist(v) > dist(u) + w(u, v) then
dist(v) = dist(u) + w(u, v)
prev(v) = u
decreasekey(H, v)

A* Search

A* search selects a path that minimizes

f (v) = g(v) + h(v)

where g(v) is the cost of the path from the start vertex to v
and h is a heuristic that estimates the cost of the cheapest
path from v to the goal.

The heuristic function must be admissible, meaning that it
never overestimates the actual cost to get to the goal vertex.

If the heuristic is monotone if satisfies the condition

h(x) ≤ w(x , y) + h(y)

for every edge (x , y) of the graph.

For an admissible, monotone heuristic, A* is equivalent to
Dijkstra’s algorithm with the reduced cost function

w ′(x , y) = w(x , y) + h(y)− h(x)

