CSC 445 - Intro to Intelligent Robotics, Spring 2018

Feedback Control

Control

- Control theory deals with the control of continuously operating dynamical systems and understanding the behavior of dynamical systems.
- Example dynamical systems:
 - Robots
 - Epidemics
 - Biological systems
 - Stock markets

Basic Control Elements

- State of the system, a vector ξ
- Dynamic behavior of the system
- System of differential equations, $\dot{\xi} = f(\xi, u)$
- Control input that can affect the behavior, u
- Controller which takes some function of the desired state
- The output, y, that is a measurement of some aspect of the state

Example: Basic Control Elements for a Mobile Robot

• State:
$$\xi = [x, y, \theta]^T$$

System of differential equations:

$$\dot{x} = v \cos \theta$$
$$\dot{y} = v \sin \theta$$
$$\dot{\theta} = \omega$$

• Control input: $u = [v, \omega]^T$

Feedback Control

- Feedback control deals with computing the control based on the output and the desired objective.
- Feedback controllers use the error (difference of output and the desired state) to compute a control input that drives the system error to zero.
- Feedback control loop:

Characterizing Controller Performance

- Rise time: time to achieve desired value.
- Overshoot: largest magnitude in excess of desired value.
- Settling time:
- Steady-state error: error remaining after the controller input no longer affects plant output.

Example: Heater System Step Response

Reference: PID Without a PhD

Proportional Controller

■ The output is proportional to the input (error).

 $u = k_p(\xi_d - \xi)$

where ξ_d is the desired state.

The input is scaled by a proportional value, k_p, referred to as the controller gain.

Example: Heater P Controller

Reference: PID Without a PhD

Integral (I) Controller

■ The output is a function of an integral term:

$$u=k_i\int_0^T(\xi_d-\xi)dt$$

where k_i is the integral gain.

The integral term basically "remembers" all that has happened since the beginning of time which allows it to cancel out any long term errors in the output.

Example: Heater I Controller

Reference: PID Without a PhD

Proportional Integral (PI) Controller

The output is a function of a proportional term and an integral term:

$$u=k_{p}e+k_{i}\int_{0}^{T}e\ dt$$

where $e = (\xi_d - \xi)$.

The integral controller is not typically used by itself because some systems cannot be stabilized by an integral controller.

Example: Heater PI Controller

Reference: PID Without a PhD

Integral Controller Considerations

- The sampling time becomes important because the error is adding up over time.
- The integral term can cause significant overshoot as a result of integral windup – the integral term accumulates over time and dominates the control output.
- The integral term typically has a limit on its magnitude to mitigate integral windup.

Proportional Integral Derivative (PID) Controller

The output adds a derivative term to the PI controller

$$u = k_p e + k_i \int_0^T e \, dt + k_d \dot{e}$$

where $e = (\xi_d - \xi)$.

- The derivative term is proportional to the rate of change of the error.
- Some systems cannot be stabilized without the derivative term.

Example: Heater PID Controller

Reference: PID Without a PhD

Proportional Integral Derivative Controller

Tuning PID Controller Gains

The following table can be used a guideline for choosing controller gains.

Response	Rise Time	Overshoot	Settling Time	S-S Error
K _p	Decrease	Increase	Small Change	Decrease
Ki	Decrease	Increase	Increase	Eliminate
K _d	Small Change	Decrease	Decrease	Small Change