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2018

Feedback Control



Control

m Control theory deals with the control of continuously
operating dynamical systems and understanding the behavior
of dynamical systems.

m Example dynamical systems:

Robots

Epidemics
Biological systems
Stock markets



Basic Control Elements

State of the system, a vector £

Dynamic behavior of the system

System of differential equations, £ = £(&, u)

Control input that can affect the behavior, u

Controller which takes some function of the desired state

The output, y, that is a measurement of some aspect of the
state



Example: Basic Control Elements for a Mobile Robot

m State: & = [x,y,0]"

m System of differential equations:

X = vcosf
y =vsinf
0 =w

m Control input: v = [v,w]”



Feedback Control

m Feedback control deals with computing the control based on
the output and the desired objective.

m Feedback controllers use the error (difference of output and
the desired state) to compute a control input that drives the
system error to zero.

m Feedback control loop:
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Characterizing Controller Performance

m Rise time: time to achieve
desired VaIUe. Step Response

m Overshoot: largest
magnitude in excess of
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m Settling time:

m Steady-state error: error

remaining after the

Settling Time

controller input no longer e
affects plant output.
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Example: Heater System Step Response
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Proportional Controller

m The output is proportional to the input (error).

u=ky(q —§)

where £y is the desired state.

m The input is scaled by a proportional value, k,, referred to as
the controller gain.



Example: Heater P Controller
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Integral (1) Controller

m The output is a function of an integral term:

T
u= k;A (fd —f)dt

where k; is the integral gain.

m The integral term basically “remembers” all that has
happened since the beginning of time which allows it to cancel
out any long term errors in the output.



Example: Heater | Controller
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Proportional Integral (PI) Controller

m The output is a function of a proportional term and an
integral term:

-
u:kpe—l—k,-/ e dt

0

where e = (£4 — &).

m The integral controller is not typically used by itself because
some systems cannot be stabilized by an integral controller.



Example: Heater Pl Controller
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Integral Controller Considerations

m The sampling time becomes important because the error is
adding up over time.

m The integral term can cause significant overshoot as a result
of integral windup — the integral term accumulates over time
and dominates the control output.

m The integral term typically has a limit on its magnitude to
mitigate integral windup.



Proportional Integral Derivative (PID) Controller

m The output adds a derivative term to the PI controller
T
u—kpe—i-k,-/ e dt + kgé
0

where e = (§4 — &).

m The derivative term is proportional to the rate of change of
the error.

m Some systems cannot be stabilized without the derivative
term.



Example: Heater PID Controller
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Proportional Integral Derivative Controller
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Tuning PID Controller Gains

m The following table can be used a guideline for choosing
controller gains.

Response Rise Time Overshoot | Settling Time S-S Error
Kp Decrease Increase | Small Change Decrease
K; Decrease Increase Increase Eliminate
Ky Small Change | Decrease Decrease Small Change




