CSC 445 - Intro to Intelligent Robotics, Spring 2018

Feature Extraction

Feature Extraction

- Raw sensor information about the environment may not be directly useful to a robot.
- Feature extraction is the process of extracting information from one or more sensors into a higher level percept.
- Features are recognizable structures of elements in the environment.
- Low-level features: geometric primitives
- High-level features: objects
- Feature extraction can be viewed as an information reduction problem.

Considerations for Choosing Features

- Target environment
- Available sensors
- Computational power
- Environmental representation

Properties of Feature Detectors

- Repeatability
- Distinctiveness
- Localization accuracy

■ Quantity of features

- Invariance
- Computational efficiency
- Robustness

Line recognition

- Line segments are one of the simplest geometric features to extract.
- Problems extracting lines in unknown environments:
- How many lines are there?
- Which points belong to which line?
- Given points that belong to a line, how can the line model parameters be estimated?

Line Representation in 2D Cartesian Coordinates

- Intercept-slope

$$
y=a x+b
$$

- Hessian normal form

$$
x \cos \alpha+y \sin \alpha-r=0
$$

Parametrizing Lines in Polar Coordinates

- A line represented in polar coordinates $\left(\rho_{i}, \theta_{i}\right)$ can be represented with the equation

$$
\rho_{i} \cos \left(\theta_{i}-\alpha\right)-r=d_{i}
$$

where r and α are the line parameters.

Fitting Models with Least Squares

- Given a set of n points, find the model parameters.
- If there is no error, all the points would lie on the model, but this is typically not true.
- Least squares finds the model parameters that minimize the sum of the squared error for each point

$$
S=\sum_{i=1}^{n} \epsilon_{i}^{2}
$$

where ϵ_{i} is the error for the $i^{\text {th }}$ point.

Example: Least Squares Line Fitting

- Choose a line model, for example:

$$
x_{i} \cos \alpha+y_{i} \sin \alpha-r=0
$$

- The sum of the squared error in this case is

$$
S=\sum_{i=1}^{n} x_{i} \cos \alpha+y_{i} \sin \alpha-r
$$

- The model parameters are r and α, to minimize S we need to solve the nonlinear system of equations

$$
\frac{\partial S}{\partial r}=0 \quad \frac{\partial S}{\partial \alpha}=0
$$

Split and Merge Line Segmentation

- Split
- Obtain a line passing by the two extreme points.
- Find the most distant point to the line.
- If the distance is greater than a threshold, then split and repeat with the left and right point sets.
- Merge
- If two consecutive segments are close/collinear enough, then obtain the common line and find the most distant point.
- If the distance is less than or equal to a threshold, then merge both segments.

Split and Merge Line Segmentation

