CSC 445, Spring 2018, Assignment 4

Purpose: Feedback Control

Due: 4:30pm, Friday, March 9, 2018

Program: Move to a point

Create a Python script named assignment4.py that does the following:

1. The following equations define a control law to move a differential drive robot from the current pose $[x, y, \theta]$ to a desired point $\left[x_{d}, y_{d}\right]$:

$$
\begin{aligned}
v & =k_{v} \sqrt{\left(x_{d}-x\right)^{2}+\left(y_{d}-y\right)^{2}} \\
\omega & =\operatorname{atan} 2\left(y_{d}-y, x_{d}-x\right)-\theta
\end{aligned}
$$

where k_{v} is a proportional gain. Define a python function named controller that computes control inputs based on the previous equations. Note: be careful when subtracting angles so that the result is in the range $(-\pi, \pi]$.
2. The following pseudocode moves the robot to within 1 centimeter of a goal location:

```
d = 0.5 # distance between the wheels
r = 0.25 # radius of the wheels
dt = 0.5 # execute a command every half second
pose = [0, 0, 0]
goal = [1, 1]
while (the robot is greater than 1 centimeter from the goal point):
    # compute the control inputs
    v, omega = controller(pose, goal, kv)
    # transform v and omega into left and right wheel velocities
    # scale the wheel velocities if either is greater than the maximum
    # wheel velocity (use plus/minus 0.5 rad/s)
    # compute the new pose based on the solution to assignment 3
    pose = differential_drive(pose, r, d, phi_dot_l, phi_dot_r, dt)
```

Write code that that moves the robot from the pose $[0,0,0]^{T}$ to the point $[1,1]$ four times: (1) $k_{v}=0.01,(2) k_{v}=0.1,(3) k_{v}=0.5$, and (4) $k_{v}=0.99$
3. Print the time each trial took to complete.
4. Plot the path for each trial on the same figure.

Turning in the Assignment

Submit the assignment4.py file to the appropriate folder on D2L.

