
AWK REFERENCE

AWK Program Execution ... 4
Action Statements .. 7
Arrays ... 9
Bug Reports.. 15
Command Line Arguments (standard) 2
Command Line Arguments (gawk) 3
Command Line Arguments (mawk) 4
Conversions And Comparisons 10
Copying Permissions.. 16
Definitions .. 2
Environment Variables ... 16
Escape Sequences... 7
Expressions ... 9
Fields .. 6
FTP Information... 16
Historical Features (gawk) .. 16
Input Control .. 11
Lines And Statements... 5
Numeric Functions ... 13
Output Control.. 11
Pattern Elements... 7
POSIX Character Classes (gawk)................................ 6
Printf Formats ... 12
Records ... 6
Regular Expressions ... 5
Special Filenames... 13
String Functions ... 14
Time Functions (gawk).. 15
User-defined Functions .. 15
Variables ... 8

CONTENTS

This reference card was written by Arnold Robbins. Brian
Kernighan and Michael Brennan reviewed it; we thank them for
their help.

Free Software Foundation, Inc.
59 Temple Place — Suite 330
Boston, MA 02111-1307 USA

Phone: +1-617-542-5942
Fax (including Japan): +1-617-542-2652

E-mail: gnu@prep.ai.mit.edu

Free Software
Source Distributions on CD-ROM

Deluxe Distributions
Emacs, Gawk, Make and GDB Manuals

Emacs and GDB References

OTHER FSF PRODUCTS:

© Copyright, 1996, 1997 Free Software Foundation
59 Temple Place — Suite 330
Boston, MA 02111-1307 USA

1

This card describes POSIX AWK, as well as the three freely
available awk implementations (see FTP Infor mation below).
Common extensions (in two or more versions) are printed in light
blue. Features specific to just one version—usually GNU AWK
(gawk)—are printed in dark blue. Exceptions and deprecated
features are printed in red. Features mandated by POSIX are
printed in black.

Several type faces are used to clarify the meaning:
• Courier Bold is used for computer input.
• Times Italic is used to indicate user input and for syntactic

placeholders, such as variable or action.
• Times Roman is used for explanatory text.

number − a floating point number as in ANSI C, such as 3, 2.3,
1.4e2 or 4.1E5.

escape sequences − a special sequence of characters beginning
with a backslash, used to describe otherwise unprintable
characters. (See Escape Sequences below.)

string − a group of characters enclosed in double quotes. Strings
may contain escape sequences.

regexp − a regular expression, either a regexp constant enclosed in
forward slashes, or a dynamic regexp computed at run-time.
Regexp constants may contain escape sequences.

name − a variable, array or function name.

entry(N) − entry entry in section N of the UNIX reference
manual.

pattern − an expression describing an input record to be matched.

action − statements to execute when an input record is matched.

rule − a pattern-action pair, where the pattern or action may be
missing.

DEFINITIONS

Command line arguments control setting the field separator,
setting variables before the BEGIN rule is run, and the location of
AWK program source code. Implementation-specific command
line arguments change the behavior of the running interpreter.

−F fs use fs for the input field separator.
−v var=val assign the value val, to the variable var, before

execution of the program begins. Such variable
values are available to the BEGIN rule.

−f prog-file read the AWK program source from the file
prog-file, instead of from the first command line
argument. Multiple −f options may be used.

−− signal the end of options.

The following options are accepted by both Bell Labs awk and
gawk (ignored by gawk, not in mawk).

−mf val set the maximum number of fields to val
−mr val set the maximum record size to val

COMMAND LINE ARGUMENTS (standard)

2

Copyright 05-13-97 22:22:06, FSF, Inc. (all)

The following options are specific to gawk. The −W forms are for
full POSIX compliance.

−−field-separator fs
just like −F

−−assign var=val just like −v
−−file prog-file just like −f
−−traditional
−−compat
−W compat
−W traditional turn off gawk-specific extensions

(−−traditional preferred).
−−copyleft
−−copyright
−W copyleft
−W copyright print the short version of the GNU

copyright information on stdout.
−−help
−−usage
−W help
−W usage print a short summary of the available

options on stdout, then exit zero.
−−lint
−W lint warn about constructs that are dubious

or non-portable to other awks.
−−lint−old
−W lint−old warn about constructs that are not

portable to the original version of Unix
awk.

−−posix
−W posix disable common and GNU extensions.

Enable interval expressions in regular
expression matching (see Regular
Expressions below).

−−re−interval
−W re−interval enable interval expressions in regular

expression matching (see Regular
Expressions below). Useful if
−−posix is not specified.

−−source ’text’
−W source ’text’ use text as AWK program source code.
−−version
−W version print version information on stdout

and exit zero.

In compatibility mode, any other options are flagged as illegal,
but are otherwise ignored. In normal operation, as long as
program text has been supplied, unknown options are passed on
to the AWK program in ARGV for processing. This is most useful
for running AWK programs via the #! executable interpreter
mechanism.

COMMAND LINE ARGUMENTS (gawk)

3

The following options are specific to mawk.

−W dump print an assembly listing of the program
to stdout and exit zero.

−W exec file read program text from file. No other
options are processed. Useful with #!.

−W interactive unbuffer stdout and line buffer
stdin. Lines are always records,
ignoring RS

−W posix_space \n separates fields when RS = "".
−W sprintf=num adjust the size of mawk’s internal

sprintf buffer.
−W version print version and copyright on stdout

and limit information on stderr and
exit zero.

The options may be abbreviated using just the first letter, e.g.,
−We, −Wv and so on.

COMMAND LINE ARGUMENTS (mawk)

AWK programs are a sequence of pattern-action statements and
optional function definitions.

pattern { action statements }
function name(parameter list) { statements }

awk first reads the program source from the prog-file(s), if
specified, from arguments to −−source, or from the first non-
option argument on the command line. The program text is read
as if all the prog-file(s) and command line source texts had been
concatenated.

AWK programs execute in the following order. First, all variable
assignments specified via the −v option are performed. Next,
awk executes the code in the BEGIN rules(s), if any, and then
proceeds to read the files 1 through ARGC − 1 in the ARGV
array. (Adjusting ARGC and ARGV thus provides control over the
input files that will be processed.) If there are no files named on
the command line, awk reads the standard input.

If a command line argument has the form var=val, it is treated as
a variable assignment. The variable var will be assigned the value
val. (This happens after any BEGIN rule(s) have been run.)
Command line variable assignment is most useful for
dynamically assigning values to the variables awk uses to control
how input is broken into fields and records. It is also useful for
controlling state if multiple passes are needed over a single data
file.

If the value of a particular element of ARGV is empty (""), awk
skips over it.

For each record in the input, awk tests to see if it matches any
pattern in the AWK program. For each pattern that the record
matches, the associated action is executed. The patterns are
tested in the order they occur in the program.

Finally, after all the input is exhausted, awk executes the code in
the END rule(s), if any.

If a program only has a BEGIN rule, no input files are processed.
If a program only has an END rule, the input will be read.

AWK PROGRAM EXECUTION

4

Copyright 05-13-97 22:22:06, FSF, Inc. (all)

AWK is a line oriented language. The pattern comes first, and
then the action. Action statements are enclosed in { and }. Either
the pattern or the action may be missing, but not both. If the
pattern is missing, the action will be executed for every input
record. A missing action is equivalent to

{ print }

which prints the entire record.

Comments begin with the # character, and continue until the end
of the line. Normally, a statement ends with a newline, but lines
ending in a ‘‘,’’, {, ?, :, && or || are automatically continued.
Lines ending in do or else also have their statements
automatically continued on the following line. In other cases, a
line can be continued by ending it with a ‘‘\’’, in which case the
newline will be ignored. However, a ‘‘\’’ after a # is not special.

Multiple statements may be put on one line by separating them
with a ‘‘;’’. This applies to both the statements within the action
part of a pattern-action pair (the usual case) and to the pattern-
action statements themselves.

LINES AND STATEMENTS

Regular expressions are the extended kind originally defined by
egrep. Additional GNU regexp operators are supported by
gawk. A word-constituent character is a letter, digit, or
underscore (_).

Summary of Regular Expressions
In Decreasing Precedence

(r) regular expression (for grouping)
c if non-special char, matches itself
\c turn off special meaning of c
ˆ beginning of string (note: not line)
$ end of string (note: not line)
. any single character, including newline
[...] any one character in ... or range
[ˆ...] any one character not in ... or range
\y word boundary
\B middle of a word
\< beginning of a word
\> end of a word
\w any word-constituent character
\W any non-word-constituent character
\‘ beginning of a buffer (string)
\’ end of a buffer (string)
r* zero or more occurrences of r
r+ one or more occurrences of r
r? zero or one occurrences of r
r{n,m} n to m occurrences of r (POSIX: see note below)
r1| r2 r1 or r2

The r{n,m} notation is called an interval expression. POSIX
mandates it for AWK regexps, but most awks don’t implement it.
Use −−re−interval or −−posix to enable this feature in
gawk.

REGULAR EXPRESSIONS

5

In regular expressions, within character ranges ([...]), the
notation [[:class:]] defines characters classes:

alnum alphanumeric lower lower-case
alpha alphabetic print printable
blank space or tab punct punctuation
cntrl control space whitespace
digit decimal upper upper-case
graph non-spaces xdigit hexadecimal

POSIX CHARACTER CLASSES (gawk)

Normally, records are separated by newline characters. Assigning
values to the built-in variable RS controls how records are
separated. If RS is any single character, that character separates
records. Otherwise, RS is a regular expression. (Not Bell Labs
awk.) Te xt in the input that matches this regular expression will
separate the record. gawk sets RT to the value of the input text
that matched the regular expression. The value of IGNORECASE
will also affect how records are separated when RS is a regular
expression. If RS is set to the null string, then records are
separated by one or more blank lines. When RS is set to the null
string, the newline character always acts as a field separator, in
addition to whatever value FS may have. mawk does not apply
exceptional rules to FS when RS = "".

RECORDS

As each input record is read, awk splits the record into fields,
using the value of the FS variable as the field separator. If FS is a
single character, fields are separated by that character. If FS is
the null string, then each individual character becomes a separate
field. Otherwise, FS is expected to be a full regular expression.
In the special case that FS is a single space, fields are separated
by runs of spaces and/or tabs and/or newlines. Leading and
trailing whitespace are ignored. The value of IGNORECASE will
also affect how fields are split when FS is a regular expression.

If the FIELDWIDTHS variable is set to a space separated list of
numbers, each field is expected to have a fixed width, and gawk
will split up the record using the specified widths. The value of
FS is ignored. Assigning a new value to FS overrides the use of
FIELDWIDTHS, and restores the default behavior.

Each field in the input record may be referenced by its position,
$1, $2 and so on. $0 is the whole record. Fields may also be
assigned new values.

The variable NF is set to the total number of fields in the input
record.

References to non-existent fields (i.e., fields after $NF) produce
the null-string. However, assigning to a non-existent field (e.g.,
$(NF+2) = 5) will increase the value of NF, create any
intervening fields with the null string as their value, and cause the
value of $0 to be recomputed with the fields being separated by
the value of OFS. References to negative numbered fields cause a
fatal error. Decreasing the value of NF causes the trailing fields to
be lost (not Bell Labs awk).

FIELDS

6

Copyright 05-13-97 22:22:06, FSF, Inc. (all)

AWK patterns may be one of the following.

BEGIN
END
expression
pat1,pat2

BEGIN and END are special patterns that provide start-up and
clean-up actions respectively. They must have actions. There can
be multiple BEGIN and END rules; they are merged and executed
as if there had just been one large rule. They may occur anywhere
in a program, including different source files.

Expression patterns can be any expression, as described under
Expressions.

The pat1,pat2 pattern is called a range pattern. It matches all
input records starting with a record that matches pat1, and
continuing until a record that matches pat2, inclusive. It does not
combine with any other pattern expression.

PA TTERN ELEMENTS

if (condition) statement [else statement]
while (condition) statement
do statement while (condition)
for (expr1; expr2; expr3) statement
for (var in array) statement
break
continue
delete array[index]
delete array
exit [expression]
next
nextfile (not mawk)
{ statements }

ACTION STATEMENTS

Within strings constants ("...") and regexp constants (/.../),
escape sequences may be used to generate otherwise unprintable
characters. This table lists the available escape sequences.

\a alert (bell) \r carriage return
\b backspace \t horizontal tab
\f form feed \v vertical tab
\n newline \\ backslash
\ddd octal value ddd \xhh hex value hh
\" double quote \/ forward slash

ESCAPE SEQUENCES

7

ARGC number of command line arguments.
ARGIND index in ARGV of current data file.
ARGV array of command line arguments. Indexed

from 0 to ARGC − 1. Dynamically changing
the contents of ARGV can control the files
used for data.

CONVFMT conversion format for numbers, default
value is "%.6g".

ENVIRON array containing the the current
environment. The array is indexed by the
environment variables, each element being
the value of that variable.

ERRNO contains a string describing the error when a
redirection or read for getline fails, or if
close() fails.

FIELDWIDTHS white-space separated list of fieldwidths.
Used to parse the input into fields of fixed
width, instead of the value of FS.

FILENAME name of the current input file. If no files
given on the command line, FILENAME is
‘‘−’’. FILENAME is undefined inside the
BEGIN rule (unless set by getline).

FNR number of the input record in current input
file.

FS input field separator, a space by default (see
Fields above).

IGNORECASE if non-zero, all regular expression and string
operations ignore case. In versions of gawk
prior to 3.0, IGNORECASE only affected
regular expression operations and
index().

NF number of fields in the current input record.
NR total number of input records seen so far.
OFMT output format for numbers, "%.6g", by

default. Old versions of awk also used this
for number to string conversion instead of
CONVFMT.

OFS output field separator, a space by default.
ORS output record separator, a newline by

default.
RS input record separator, a newline by default

(see Records above).
RT record terminator. gawk sets RT to the input

text that matched the character or regular
expression specified by RS.

RSTART index of the first character matched by
match(); 0 if no match.

RLENGTH length of the string matched by match();
−1 if no match.

SUBSEP character(s) used to separate multiple
subscripts in array elements, by default
"\034". (see Arrays below).

VARIABLES

8

Copyright 05-13-97 22:22:06, FSF, Inc. (all)

An arrays subscript is an expression between square brackets ([
and]). If the expression is a list (expr, expr ...), then the
subscript is a string consisting of the concatenation of the (string)
value of each expression, separated by the value of the SUBSEP
variable. This simulates multi-dimensional arrays. For example:

i = "A"; j = "B"; k = "C"
x[i, j, k] = "hello, world\n"

assigns "hello, world\n" to the element of the array x
indexed by the string "A\034B\034C". All arrays in AWK are
associative, i.e., indexed by string values.

Use the special operator in in an if or while statement to see
if a particular value is an array index.

if (val in array)
print array[val]

If the array has multiple subscripts, use (i, j) in array.

Use the in construct in a for loop to iterate over all the elements
of an array.

Use the delete statement to delete an element from an array.
Specifying just the array name without a subscript in the delete
statement deletes the entire contents of an array.

ARRAYS

Expressions are used as patterns, for controlling conditional
action statements, and to produce parameter values when calling
functions. Expressions may also be used as simple statements,
particularly if they hav e side-effects such as assignment.
Expressions mix operands and operators. Operands are constants,
fields, variables, array elements, and the return values from
function calls (both built-in and user-defined).

Regexp constants (/pat/), when used as simple expressions, i.e.,
not used on the right-hand side of ˜ and !˜, or as arguments to
the gensub(), gsub(), match(), split(), and sub(),
functions, mean $0 ˜ /pat/.

The AWK operators, in order of decreasing precedence, are

(...) grouping
$ field reference
++ −− increment and decrement, prefix and postfix
ˆ ** exponentiation
+ − ! unary plus, unary minus, and logical negation
* / % multiplication, division, and modulus
+ − addition and subtraction
space string concatenation
< > less than, greater than
<= >= less than or equal, greater than or equal
!= == not equal, equal
˜ !˜ regular expression match, negated match
in array membership
&& logical AND, short circuit
|| logical OR, short circuit
?: in-line conditional expression
= += −= *= /= %= ˆ= **=

assignment operators

EXPRESSIONS

9

Variables and fields may be (floating point) numbers, strings or
both. Context determines how the value of a variable is
interpreted. If used in a numeric expression, it will be treated as a
number, if used as a string it will be treated as a string.

To force a variable to be treated as a number, add 0 to it; to force
it to be treated as a string, concatenate it with the null string.

When a string must be converted to a number, the conversion is
accomplished using atof(3). A number is converted to a string by
using the value of CONVFMT as a format string for sprintf(3),
with the numeric value of the variable as the argument. However,
ev en though all numbers in AWK are floating-point, integral
values are always converted as integers.

Comparisons are performed as follows: If two variables are
numeric, they are compared numerically. If one value is numeric
and the other has a string value that is a ‘‘numeric string,’’ then
comparisons are also done numerically. Otherwise, the numeric
value is converted to a string, and a string comparison is
performed. Two strings are compared, of course, as strings.
According to the POSIX standard, even if two strings are numeric
strings, a numeric comparison is performed. However, this is
clearly incorrect, and none of the three free awks do this.

Note that string constants, such as "57", are not numeric strings,
they are string constants. The idea of ‘‘numeric string’’ only
applies to fields, getline input, FILENAME, ARGV elements,
ENVIRON elements and the elements of an array created by
split() that are numeric strings. The basic idea is that user
input, and only user input, that looks numeric, should be treated
that way.

Uninitialized variables have the numeric value 0 and the string
value "" (the null, or empty, string).

CONVERSIONS AND COMPARISONS

ISBN: 0-916151-97-2

10

Copyright 05-13-97 22:22:06, FSF, Inc. (all)

close(file) close input file or pipe.
getline set $0 from next input record; set NF,

NR, FNR.
getline < file set $0 from next record of file; set NF.
getline v set v from next input record; set NR,

FNR.
getline v < file set v from next record of file.
cmd | getline pipe into getline; set $0, NF.
cmd | getline v pipe into getline; set v.
next

stop processing the current input record. Read next input
record and start over with the first pattern in the program.
Upon end of the input data, execute any END rule(s).

nextfile
stop processing the current input file. The next input record
comes from the next input file. FILENAME and ARGIND are
updated, FNR is reset to 1, and processing starts over with the
first pattern in the AWK program. Upon end of input data,
execute any END rule(s). Earlier versions of gawk used
next file, as two words. This generates a warning
message and will eventually be removed. mawk does not
currently support nextfile.

getline returns 0 on end of file, and −1 on an error.

INPUT CONTROL

close(file)
close output file or pipe.

fflush([file])
flush any buffers associated with the open output file or pipe
file. If file is missing, then standard output is flushed. If file
is the null string, then all open output files and pipes are
flushed (not Bell Labs awk).

print
print the current record. The output record is terminated with
the value of ORS.

print expr-list
print expressions. Each expression is separated by the value
of OFS. The output record is terminated with the value of
ORS.

printf fmt, expr-list
format and print (see Pr intf Formats below).

system(cmd)
execute the command cmd, and return the exit status (may
not be available on non-POSIX systems).

I/O redirections may be used with both print and printf.

print "hello" > file
Print data to file. The first time the file is written to, it will be
truncated. Subsequent commands append data.

print "hello" >> file
Append data to file. The previous contents of the file are not
lost.

print "hello" | cmd
Print data down a pipeline to cmd.

OUTPUT CONTROL

11

The printf statement and sprintf() function accept the
following conversion specification formats:

%c an ASCII character
%d a decimal number (the integer part)
%i a decimal number (the integer part)
%e a floating point number of the form

[−]d.dddddde[+ −]dd
%E like %e, but use E instead of e
%f a floating point number of the form

[−]ddd.dddddd
%g use %e or %f, whichever is shorter, with

nonsignificant zeros suppressed
%G like %g, but use %E instead of %e
%o an unsigned octal integer
%s a character string
%x an unsigned hexadecimal integer
%X like %x, but use ABCDEF for 10–15
%% A literal %; no argument is converted

Optional, additional parameters may lie between the % and the
control letter:

− left-justify the expression within its field.
space for numeric conversions, prefix positive values

with a space and negative values with a minus
sign.

+ used before the width modifier means to always
supply a sign for numeric conversions, even if
the data to be formatted is positive. The +
overrides the space modifier.

use an ‘‘alternate form’’ for some control letters.
%o supply a leading zero.
%x, %X supply a leading 0x or 0X for a nonzero result.
%e, %E, %f the result always has a decimal point.
%g, %G trailing zeros are not removed.
0 a leading zero acts as a flag, indicating output

should be padded with zeroes instead of spaces.
This applies even to non-numeric output formats.
Only has an effect when the field width is wider
than the value to be printed.

width pad the field to this width. The field is normally
padded with spaces. If the 0 flag has been used,
pad with zeroes. The meaning of the width
varies by control letter:

%d, %o, %i,
%u, %x, %X the minimum number of digits to print.
%e, %E, %f the number of digits to print to the right of the

decimal point.
%g, %G the maximum number of significant digits.
%s the maximum number of characters to print.

The dynamic width and prec capabilities of the ANSI C
printf() routines are supported. A * in place of either the
width or prec specifications will cause their values to be taken
from the argument list to printf or sprintf().

PRINTF FORMATS

12

Copyright 05-13-97 22:22:06, FSF, Inc. (all)

When doing I/O redirection from either print or printf into a
file or via getline from a file, all three implementations of
awk recognize certain special filenames internally. These
filenames allow access to open file descriptors inherited from the
parent process (usually the shell). These filenames may also be
used on the command line to name data files. The filenames are:

"−" standard input
/dev/stdin standard input (not mawk)
/dev/stdout standard output
/dev/stderr standard error output

The following names are specific to gawk.

/dev/fd/n file associated with the open file descriptor n

Other special filenames provide access to information about the
running gawk process. Reading from these files returns a single
record. The filenames and what they return are:

/dev/pid process ID of current process
/dev/ppid parent process ID of current process
/dev/pgrpid process group ID of current process
/dev/user a single newline-terminated record.

The fields are separated with spaces.
$1 is the return value of getuid(2),
$2 is the return value of geteuid(2),
$3 is the return value of getgid(2) , and
$4 is the return value of getegid(2).
Any additional fields are the group IDs
returned by getgroups(2). Multiple groups
may not be supported on all systems.

These filenames will become obsolete in gawk 3.1. Be aw are
that you will have to change your programs.

SPECIAL FILENAMES

atan2(y, x) the arctangent of y/x in radians.
cos(expr) the cosine of expr, which is in radians.
exp(expr) the exponential function (e ˆ x).
int(expr) truncates to integer.
log(expr) the natural logarithm function (base e).
rand() a random number between 0 and 1.
sin(expr) the sine of expr, which is in radians.
sqrt(expr) the square root function.
srand([expr]) uses expr as a new seed for the random

number generator. If no expr, the time of day
is used. Returns previous seed for the
random number generator.

NUMERIC FUNCTIONS

13

gensub(r, s, h [, t])
search the target string t for matches of the regular expression
r. If h is a string beginning with g or G, replace all matches
of r with s. Otherwise, h is a number indicating which match
of r to replace. If no t is supplied, $0 is used instead. Within
the replacement text s, the sequence \n, where n is a digit
from 1 to 9, may be used to indicate just the text that
matched the nth parenthesized subexpression. The sequence
\0 represents the entire matched text, as does the character
&. Unlike sub() and gsub(), the modified string is
returned as the result of the function, and the original target
string is not changed.

gsub(r, s [, t])
for each substring matching the regular expression r in the
string t, substitute the string s, and return the number of
substitutions. If t is not supplied, use $0. An & in the
replacement text is replaced with the text that was actually
matched. Use \& to get a literal &. See The GNU Awk User’s
Guide for a fuller discussion of the rules for &’s and
backslashes in the replacement text of gensub(), sub()
and gsub()

index(s, t)
returns the index of the string t in the string s, or 0 if t is not
present.

length([s])
returns the length of the string s, or the length of $0 if s is
not supplied.

match(s, r)
returns the position in s where the regular expression r
occurs, or 0 if r is not present, and sets the values of variables
RSTART and RLENGTH.

split(s, a [, r])
splits the string s into the array a using the regular expression
r, and returns the number of fields. If r is omitted, FS is used
instead. The array a is cleared first. Splitting behaves
identically to field splitting. (See Fields, above.)

sprintf(fmt, expr-list)
prints expr-list according to fmt, and returns the resulting
string.

sub(r, s [, t])
just like gsub(), but only the first matching substring is
replaced.

substr(s, i [, n])
returns the at most n-character substring of s starting at i. If
n is omitted, the rest of s is used.

tolower(str)
returns a copy of the string str, with all the upper-case
characters in str translated to their corresponding lower-case
counterparts. Non-alphabetic characters are left unchanged.

toupper(str)
returns a copy of the string str, with all the lower-case
characters in str translated to their corresponding upper-case
counterparts. Non-alphabetic characters are left unchanged.

STRING FUNCTIONS

14

Copyright 05-13-97 22:22:06, FSF, Inc. (all)

gawk provides the following functions for obtaining time stamps
and formatting them.

strftime([format [, timestamp]])
formats timestamp according to the specification in format.
The timestamp should be of the same form as returned by
systime(). If timestamp is missing, the current time of
day is used. If format is missing, a default format equivalent
to the output of date(1) will be used.

systime()
returns the current time of day as the number of seconds
since the Epoch.

TIME FUNCTIONS (gawk)

Functions in AWK are defined as follows:

function name(parameter list)
{

statements
}

Functions are executed when they are called from within
expressions in either patterns or actions. Actual parameters
supplied in the function call instantiate the formal parameters
declared in the function. Arrays are passed by reference, other
variables are passed by value.

Local variables are declared as extra parameters in the parameter
list. The convention is to separate local variables from real
parameters by extra spaces in the parameter list. For example:

a & b are local
function f(p, q, a, b)
{

.....
}

/abc/ { ... ; f(1, 2) ; ... }

The left parenthesis in a function call is required to immediately
follow the function name without any intervening white space.
This is to avoid a syntactic ambiguity with the concatenation
operator. This restriction does not apply to the built-in functions.

Functions may call each other and may be recursive. Function
parameters used as local variables are initialized to the null string
and the number zero upon function invocation.

The word func may be used in place of function. Note: This
usage is deprecated.

USER-DEFINED FUNCTIONS

If you find a bug in this reference card, please report it via
electronic mail to arnold@gnu.ai.mit.edu.

BUG REPORTS

15

The environment variable AWKPATH specifies a search path to
use when finding source files named with the −f option. The
default path is ".:/usr/local/share/awk", if this
variable does not exist. (The actual directory may vary,
depending upon how gawk was built and installed.) If a file
name given to the −f option contains a ‘‘/’’ character, no path
search is performed.

If POSIXLY_CORRECT exists in the environment, then gawk
behaves exactly as if −−posix had been specified on the
command line.

ENVIRONMENT VARIABLES (gawk)

gawk supports two features of historical AWK implementations.
First, it is possible to call the length() built-in function not
only with no argument, but even without parentheses. This
feature is marked as ‘‘deprecated’’ in the POSIX standard, and
gawk will issue a warning about its use if −−lint is specified
on the command line.

The other feature is the use of continue or break statements
outside the body of a while, for, or do loop. Historical AWK
implementations have treated such usage as equivalent to the
next statement. gawk will support this usage if
−−traditional has been specified.

HISTORICAL FEATURES (gawk)

Host: ftp.gnu.ai.mit.edu
File: /pub/gnu/gawk-3.0.3.tar.gz

GNU awk (gawk). There may be a later version.

Host: netlib.bell-labs.com
File: /netlib/research/awk.bundle.Z

Bell Labs awk. This version requires an ANSI C compiler;
GCC (the GNU C compiler) works well.

Host: ftp.whidbey.net
File: /pub/brennan/mawk1.3.3.tar.gz

Michael Brennan’s mawk. There may be a newer version.

FTP INFORMATION

Copyright © 1996, 1997 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of
this reference card provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of
this reference card under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this
reference card into another language, under the above conditions
for modified versions, except that this permission notice may be
stated in a translation approved by the Foundation.

COPYING PERMISSIONS

16

Copyright 05-13-97 22:22:06, FSF, Inc. (all)

Copyright 05-13-97 22:22:06, FSF, Inc. (all)

